Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

All-electron calculation of ground state vibration-rotation energy levels of 7Li2(0, ±1) molecular systems

Wang Qiao-Xia Wang Yu-Min Ma Ri Yan Bing

Citation:

All-electron calculation of ground state vibration-rotation energy levels of 7Li2(0, ±1) molecular systems

Wang Qiao-Xia, Wang Yu-Min, Ma Ri, Yan Bing
PDF
HTML
Get Citation
  • The investigation of spectroscopic information is important for understanding the mechanisms of molecular photochemical and photophysical reactions. As a prototype to study the electronic structures and spectra of diatomic molecular systems, the vibration-rotational spectra of alkali dimer and its ions have aroused considerable research interest in the last two decades. Single-reference and multi-reference coupled cluster theory in combination with correlation consistent Gaussian basis set are adopted to study the ground-state potential energy curves of 7Li2(0,± 1) molecular systems. The correlation effect and relativistic effect of all the electrons are taken into account in the calculation. And the spectroscopic constants, including the equilibrium internuclear distance Re, the harmonic vibrational frequency ωe, the anharmonic constant ωexe, the equilibrium rotational constant Be, and the dissociation energy De of the molecular system and vibration-rotational energy level information of the ground states are obtained by solving the radial Schrödinger equations. The calculated spectroscopic constants of the neutral and positive ion system accord well with the experimental values; however for the negative ion system, the calculation of equilibrium internuclear distance needs further improving, and other spectroscopic constants are consistent well with the experimental values. The present computational results indicate that the ground state wave functions of neutral and positive ion systems have obvious single reference configuration characteristics, while the ground state of negative ion molecule system should be described with multireference configuration wave functions. The vibration-rotational energy levels of ground state with different theoretical methods are in good agreement with the experimental values. The vibrational-rotational energy levels and spectroscopic constants of neutral and positive ion systems are well reproduced, and some experimental information about spectrum is still lacking. Although the difference among the equilibrium internuclear distances for the ground state of the negative ion, obtained from different theoretical methods are still existent, the results of the vibrational level interval accord well with each other. This study provides useful information about spectrum for accurately investigating the electronic structures and spectra of the ground state of Li2 molecular system and its two isotopic molecules, especially for the negative ion system with little information about spectrum.
      Corresponding author: Ma Ri, rma@jlu.edu.cn ; Yan Bing, yanbing@jlu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 91750104, 11574114, 11874177), and the Jilin Provincial National Science Foundation, China (Grant No. 20160101332JC).
    [1]

    Gardet G, Rogemond F, Chermette H 1996 J. Chem. Phys. 105 9933Google Scholar

    [2]

    Barakat B, Bacis R, Carrot F, Churassy S, Crozet P, Martin F, Verges J 1986 Chem. Phys. 102 215Google Scholar

    [3]

    Maniero A M, Acioli P H 2005 Int. J. Quantum Chem. 103 711Google Scholar

    [4]

    Schmidt-Mink I, Müller W, Meyer W 1985 Chem. Phys. 92 263Google Scholar

    [5]

    Bernheim R A, Gold L P, Tipton T 1983 J. Chem. Phys. 78 3635Google Scholar

    [6]

    Hessel M M, Vidal C R 1979 J. Chem. Phys. 70 4439Google Scholar

    [7]

    Bernheim R A, Gold L P, Tipton T, Konowalow D D 1984 Chem. Phys. Lett. 105 201Google Scholar

    [8]

    Blustin P H, Linnett J W 1974 J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 70 826Google Scholar

    [9]

    Sarkas H W, Arnold S T, Hendricks J H, Slager V L, Bowen K H 1994 Z. Phys. D 29 209Google Scholar

    [10]

    Hogreve H 2000 Eur. Phys. J. D 8 85Google Scholar

    [11]

    Nasiri S, Zahedi M 2017 Comput. Theor. Chem. 1114 106Google Scholar

    [12]

    Brito B G A, Hai G Q, Cândido L 2017 J. Chem. Phys. 146 174306Google Scholar

    [13]

    Rabli D, McCarroll R 2017 Chem. Phys. 487 23Google Scholar

    [14]

    魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰 2016 物理学报 65 163101Google Scholar

    Wei C L, Liang G Y, Liu X T, Yan P Y, Yan B 2016 Acta Phys. Sin. 65 163101Google Scholar

    [15]

    Yang X, Xu H, Yan B 2019 Chin. Phys. B 28 348

    [16]

    Zhang L L, Gao S B, Meng Q T, Song Y Z 2015 Chin. Phys. B 24 201

    [17]

    Wei C L, Zhang X M, Ding D J, Yan B 2016 Chin. Phys. B 25 13102Google Scholar

    [18]

    Hampel C, Peterson K A, Werner H J 1992 Chem. Phys. Lett. 190 1Google Scholar

    [19]

    Knowles P J, Hampel C, Werner H 1993 J. Chem. Phys. 99 5219Google Scholar

    [20]

    Werner H J, Knowles P J, G Knizia, et al. http://www. molpro.net. [2019-3-10]

    [21]

    Rolik Z, Szegedy L, Ladjánszki I, Ladóczki B, Kállay M 2013 J. Chem. Phys. 139 094105Google Scholar

    [22]

    Prascher B P, Woon D E, Peterson K A, Dunning T H, Wilson A K 2011 Theor. Chem. Acc. 128 69Google Scholar

    [23]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [24]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167Google Scholar

    [25]

    Magnier S, Rousseau S, Allouche A R, Hadinger G, Aubert-Frécon M 1999 Chem. Phys. 246 57Google Scholar

  • 图 1  Li2(0, ±1)的基态势能曲线(能量零点取为各自平衡核间距处能量)

    Figure 1.  Potential energy curves of ground states for Li2(0, ±1) (the energy zero-point is located at respective equilibrium internuclear distance).

    表 1  7Li2 (X1g+)分子的光谱常数

    Table 1.  The spectroscopic constants of 7Li2 (X1g+).

    MethodReωe/cm–1ωexe/cm–1Be/cm–1De/eV
    vCCSD(T)/TZa2.6992346.35562.66870.65961.038
    CCSD(T)/TZ2.6770350.56092.71630.67061.046
    CCSD(T)/QZ2.6742351.77842.72380.67201.052
    CCSD(T)/5Z2.6734352.02222.72850.67241.053
    实验b2.6734351.422952.44170.668241.060
    注: a未包含1s轨道电子关联; b激光诱导荧光傅里叶变换谱(LIF FTS)实验PKR拟合值[2,6].
    DownLoad: CSV

    表 2  7Li2 (X1g+)分子的振动能级Gv (J = 0) (单位: cm–1)

    Table 2.  The vibrational levels Gv (J = 0) of 7Li2 (X1g+) (unit in cm–1).

    Vibrational levels本次结果理论a实验b
    0000
    1346.17346.05346.46
    2687.11686.65687.86
    31022.781021.711024.08
    41353.131351.151355.01
    51678.111674.881680.54
    61997.671992.812000.56
    72311.722304.852314.95
    82620.212610.922623.58
    92923.032910.902926.35
    103220.093204.703223.11
    113511.293492.233513.74
    123796.493773.363798.10
    134075.584048.004076.05
    144348.394316.024347.45
    154614.784577.314612.16
    164874.554831.744870.02
    175127.525079.525120.86
    185373.465319.525364.53
    195612.145552.595600.84
    205843.275778.255829.63
    216066.575996.356050.69
    226281.676206.726263.83
    236488.166409.206468.84
    246685.586603.596665.49
    RMS8.68(0.16%)33.93(0.65%)
    注: a FCIPP计算值[3], b LIF FTS实验值[2,6].
    DownLoad: CSV

    表 3  7Li2 (X1g+)分子的各振动能级的转动常数BvDv

    Table 3.  The rotational constants Bv and Dv of 7Li2 (X1g+).

    vBv/cm–1Dv/10-4 cm–1
    Expt.[2,6]This workExpt.[2,6]This work
    00.669070.668820.0987
    10.661960.661710.0991
    20.654790.654530.0996
    30.647540.647280.1002
    40.640190.639950.1007
    50.632750.632520.1014
    60.625210.624990.1021
    70.617540.617330.1028
    80.609740.609540.1037
    90.601800.601600.1046
    100.593680.593480.1056
    110.585400.585180.1068
    120.576920.576670.1080
    130.568220.567930.1093
    140.559180.558920.10970.1108
    150.550000.549610.11190.1123
    160.540550.539950.11430.1138
    170.530610.529900.11460.1152
    180.520440.519390.11800.1165
    190.509920.508340.12150.1175
    200.498850.496670.12460.1181
    210.487260.484290.12650.1185
    220.478450.471090.11820.1187
    230.462460.456980.13400.1190
    240.449130.441830.14010.1200
    DownLoad: CSV

    表 4  7Li2±1分子体系基态的光谱常数

    Table 4.  The spectroscopic constants of ground-state 7Li2±1 systems.

    SpeciesMethodReωe/cm–1ωexe/cm–1Be/cm–1De/eV
    Li2+本次结果a3.0986262.75991.56400.50051.297
    本次结果a23.1337258.82111.54130.48931.279
    本次结果a33.1038262.35481.56690.49881.294
    MPb3.122263.081.29540.49451.2976
    CIc3.099263.760.50061.2945
    DMCd3.11266.21.5930.47531.2965
    实验[5,7]3.11262 ± 21.7 ± 0.50.496 ± 0.0021.2973
    Li2本次结果a3.0265230.64571.58810.52470.850
    本次结果a33.0396231.10242.31150.52010.845
    DMCd3.10235.33.1660.46520.7733
    MRDCIe3.062236.22.420.857
    CCSD(T)f3.00240.73.1660.52380.9085
    实验[10]3.094 ± 0.015232 ± 350.502 ± 0.0050.865 ± 0.022(D0)
    注: a RCCSD(T)/5Z; a2vMRCCSD/TZ + 4s2p(未包含1s的电子关联); a3MRCCSD/TZ + 4s2p(包含1s的电子关联); bmodel potential (MP) method[25]; cconfiguration interaction (CI) with effective core potential[4]; ddiffusion quantum Monte-Carlo (DMC) method[12]; emultireference singly and doubly CI (MRDCI)[11]; f CCSD(T, full)/cc-pv5z[12].
    DownLoad: CSV

    表 5  Li2± 基态振动能级间隔G (v + 1)–G (v) (单位: cm–1)

    Table 5.  The vibration energy spacing G (v + 1)–G (v) of ground-state Li2± (unit in cm–1)).

    vLi2+Li2
    理论a理论b理论c本次结果理论c本次结果
    0259.51260259.74259.74227.53228.64
    1256.30257256.54256.54222.71223.96
    2253.11254253.35253.35217.93219.69
    3249.95251250.19250.19213.21216.12
    4246.81248247.04247.04208.54213.32
    5243.68244243.92243.92203.95211.08
    6240.57241240.81240.81199.42208.91
    7237.49236237.72237.72194.97206.46
    8234.41235234.65234.65190.61203.52
    9231.35232231.59231.59186.34200.06
    10228.31228228.55228.55182.16196.15
    11225.28226225.51225.51178.08191.88
    12222.26222222.50222.50174.12187.33
    13219.24220219.48219.48170.26182.59
    14216.24216216.48216.48166.53177.72
    15213.24214213.48213.48162.92172.77
    16210.25210210.50210.50159.45167.78
    17207.26207207.50207.50156.11162.77
    18204.28205204.53204.53152.91157.79
    19201.30201201.55201.55149.87152.82
    注: a CCSD(T, FULL)/aug-cc-Pcvqz[12]; b MP[25]; c DMC[12].
    DownLoad: CSV

    表 6  7Li2± 基态分子的各振动能级的转动常数BvDv

    Table 6.  The vibrational levels Bv and Dv of 7Li2±.

    vBv/cm–1Dv/10-4 cm–1
    Li2+Li2Li2+Li2-
    00.497760.520210.072230.10558
    10.492350.511290.071680.10438
    20.486980.502140.071140.10106
    30.481640.492260.070620.09317
    40.476350.481060.070110.07966
    50.471090.468240.069610.06296
    60.465860.454070.069120.04741
    70.460670.439200.068650.03586
    80.455510.424260.068190.02862
    90.450370.409690.067750.02462
    100.445270.395710.067320.02265
    110.440190.382380.066900.02180
    120.435130.369710.066490.02155
    130.430090.357660.066110.02159
    140.425070.346170.065730.02177
    150.420070.335200.065370.02201
    160.415080.324690.065030.02226
    170.410100.314610.064700.02252
    180.405140.304920.064390.02276
    190.400180.295580.064100.02300
    200.395220.286560.063820.02324
    210.390260.277840.063560.02347
    220.385310.269390.063320.02370
    230.380350.261200.063100.02392
    240.375380.253240.062900.02416
    DownLoad: CSV

    表 7  Li2分子的同位素体系的振动能级与转动常数

    Table 7.  The vibrational levels and rotational constants for isotope molecules of Li2.

    vG(v)/cm–1Bv/cm–1Dv/10-4 cm–1
    6Li7Li6Li26Li7Li6Li26Li7Li6Li2
    0000.724310.779780.11580.13429
    13603730.716290.770820.116350.13495
    27147410.708190.761760.116950.13568
    3106311020.700010.752600.117610.13647
    4140614570.691730.743330.118320.13735
    5174318050.683330.733920.119110.13832
    6207421480.674800.724360.119990.13939
    7240024840.666130.714620.120950.14058
    8271928130.657290.704690.122010.14189
    9303231350.648270.694530.123180.14335
    10333834510.639040.684120.124480.14496
    11363937600.629580.673430.125910.14673
    12393240620.619860.662420.127470.14863
    13421943560.609840.651040.129130.15062
    14450046430.599490.639240.130880.15262
    15477349220.588750.626950.132620.1545
    16503851930.577560.614070.134260.1561
    17529754560.565840.600520.135670.15725
    18554757100.553520.586170.136710.15786
    19578959560.540480.570890.137330.15794
    20602361920.526620.554560.137550.15775
    21624964180.511820.537030.137570.15778
    22646566330.495960.518150.13780.15879
    23667168380.478900.497760.138860.16187
    24686670310.460510.475640.141620.16834
    DownLoad: CSV
  • [1]

    Gardet G, Rogemond F, Chermette H 1996 J. Chem. Phys. 105 9933Google Scholar

    [2]

    Barakat B, Bacis R, Carrot F, Churassy S, Crozet P, Martin F, Verges J 1986 Chem. Phys. 102 215Google Scholar

    [3]

    Maniero A M, Acioli P H 2005 Int. J. Quantum Chem. 103 711Google Scholar

    [4]

    Schmidt-Mink I, Müller W, Meyer W 1985 Chem. Phys. 92 263Google Scholar

    [5]

    Bernheim R A, Gold L P, Tipton T 1983 J. Chem. Phys. 78 3635Google Scholar

    [6]

    Hessel M M, Vidal C R 1979 J. Chem. Phys. 70 4439Google Scholar

    [7]

    Bernheim R A, Gold L P, Tipton T, Konowalow D D 1984 Chem. Phys. Lett. 105 201Google Scholar

    [8]

    Blustin P H, Linnett J W 1974 J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 70 826Google Scholar

    [9]

    Sarkas H W, Arnold S T, Hendricks J H, Slager V L, Bowen K H 1994 Z. Phys. D 29 209Google Scholar

    [10]

    Hogreve H 2000 Eur. Phys. J. D 8 85Google Scholar

    [11]

    Nasiri S, Zahedi M 2017 Comput. Theor. Chem. 1114 106Google Scholar

    [12]

    Brito B G A, Hai G Q, Cândido L 2017 J. Chem. Phys. 146 174306Google Scholar

    [13]

    Rabli D, McCarroll R 2017 Chem. Phys. 487 23Google Scholar

    [14]

    魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰 2016 物理学报 65 163101Google Scholar

    Wei C L, Liang G Y, Liu X T, Yan P Y, Yan B 2016 Acta Phys. Sin. 65 163101Google Scholar

    [15]

    Yang X, Xu H, Yan B 2019 Chin. Phys. B 28 348

    [16]

    Zhang L L, Gao S B, Meng Q T, Song Y Z 2015 Chin. Phys. B 24 201

    [17]

    Wei C L, Zhang X M, Ding D J, Yan B 2016 Chin. Phys. B 25 13102Google Scholar

    [18]

    Hampel C, Peterson K A, Werner H J 1992 Chem. Phys. Lett. 190 1Google Scholar

    [19]

    Knowles P J, Hampel C, Werner H 1993 J. Chem. Phys. 99 5219Google Scholar

    [20]

    Werner H J, Knowles P J, G Knizia, et al. http://www. molpro.net. [2019-3-10]

    [21]

    Rolik Z, Szegedy L, Ladjánszki I, Ladóczki B, Kállay M 2013 J. Chem. Phys. 139 094105Google Scholar

    [22]

    Prascher B P, Woon D E, Peterson K A, Dunning T H, Wilson A K 2011 Theor. Chem. Acc. 128 69Google Scholar

    [23]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [24]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transf. 186 167Google Scholar

    [25]

    Magnier S, Rousseau S, Allouche A R, Hadinger G, Aubert-Frécon M 1999 Chem. Phys. 246 57Google Scholar

  • [1] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu. Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [2] Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng. Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule. Acta Physica Sinica, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [3] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [4] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. Theoretical study of spectroscopic properties of 5 -S and 10 states and laser cooling for AlH+ cation. Acta Physica Sinica, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [5] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [6] Wei Chang-Li,  Liao Hao,  Luo Tai-Sheng,  Ren Yin-Shuan,  Yan Bing. Theoretical study on potential curves and spectroscopic constants of low-lying electronic states of Na2+ cation. Acta Physica Sinica, 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [7] Wei Chang-Li, Liang Gui-Ying, Liu Xiao-Ting, Yan Pei-Yuan, Yan Bing. Calculations on rovibrational spectra of two lowest electronic states in sulfur monoxide molecule by explicitly correlated approach. Acta Physica Sinica, 2016, 65(16): 163101. doi: 10.7498/aps.65.163101
    [8] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation. Acta Physica Sinica, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [9] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [10] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [12] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [13] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [15] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Study on spectroscopic properties of B2 (X3g-, A3u) molecule. Acta Physica Sinica, 2012, 61(20): 203101. doi: 10.7498/aps.61.203101
    [16] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao. Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [17] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [19] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
Metrics
  • Abstract views:  5764
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2019
  • Accepted Date:  10 April 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回