Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eavesdropping and countermeasures for backflash side channel in fiber polarization-coded quantum key distribution

Chen Yan-Hui Wang Jin-Dong Du Cong Ma Rui-Li Zhao Jia-Yu Qin Xiao-Juan Wei Zheng-Jun Zhang Zhi-Ming

Citation:

Eavesdropping and countermeasures for backflash side channel in fiber polarization-coded quantum key distribution

Chen Yan-Hui, Wang Jin-Dong, Du Cong, Ma Rui-Li, Zhao Jia-Yu, Qin Xiao-Juan, Wei Zheng-Jun, Zhang Zhi-Ming
PDF
HTML
Get Citation
  • Nowadays, the practical security of quantum key distribution (QKD) is the biggest challenge. In practical implementation, the security of a practical system strongly depends on its device implementation, and device defects will create security holes. The information leakage from a receiving unit due to secondary photon emission (backflash) is caused by a single-photon detector in the avalanche process. Now studies have shown that the backflash will leak the information about time and polarization and the eavesdropping behavior will not generate additional error rate in the communication process. An eavesdropping scheme obtaining time information by using backflash is proposed. Targeting this security hole for backflash leaking polarization information, an eavesdropping scheme for obtaining polarization information by using backflash is proposed in free-space QKD; however, it has not been reported in fiber QKD. In this study, the eavesdropping scheme and countermeasures for obtaining information by using backflash in fiber polarization-coded QKD is proposed. Since the polarization state of the fiber polarization-coded QKD system is easy to change, the scheme is proposed based on the time-division multiplexing polarization compensation fiber polarization-coded QKD system. In theory, the eavesdropper in this scheme obtaining the key information by using the backflash is theoretically deduced, and corrects the polarization change of the backflash by time-division multiplexing polarization compensation method, thus obtaining the accurate polarization information. The probability of backflash in the fiber polarization-coded QKD is measured to be 0.05, and the information leakage in the proposed eavesdropping scheme is quantified. The lower limit of the information obtained by the eavesdropper is 2.5 × 10–4. Due to the fact that the polarization compensation process increases invalid information in actual operation, the information obtained by the eavesdropper will be further reduced, thus obtaining the lower limit of information leakage. The results show that the backflash leaks a small amount of key information in a time-multiplexed polarization-compensated fiber polarization-coded QKD system. The wavelength characteristics of the backflash can be utilized to take corresponding defense methods. Backflash has a wide spectral range, and the count of backflash has a peak wavelength. So, tunable filters and isolators can be used to reduce backflash leakage, thereby reducing the information leakage.
      Corresponding author: Wang Jin-Dong, wangjindong@m.scnu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No. 61771205), the National Science Foundation of Guangdong Province, China (Grant No. 2015A030313388), and the Science and Technology Projects of Guangdong Province, China (Grant Nos. 2015B010128012, 2017KZ010101).
    [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [2]

    Xu G, Chen X B, Dou Z, Yang Y X, Li Z 2015 Quantum Inf. Process 14 2959Google Scholar

    [3]

    岳孝林, 王金东, 魏正军, 郭邦红, 刘颂豪 2012 物理学报 61 184215

    Yue X L, WangJ D, Wei Z J, Guo B H, Liu S H 2012 Acta Phys. Sin. 61 184215

    [4]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 物理学报 66 230303Google Scholar

    Yang L, Ma H X, Zhen C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [5]

    邓富国, 李熙涵, 李涛 2018 物理学报 67 130301Google Scholar

    Deng G F, Li X H, Li T 2018 Acta Phys. Sin. 67 130301Google Scholar

    [6]

    Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4

    [7]

    Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018 Quantum Inf. Process 17 225Google Scholar

    [8]

    Chen X B, SunY R, Xu G, Jia H Y, Qu Z, Yang Y X 2017 Quantum Inf. Process 16 244Google Scholar

    [9]

    Xu G, Xiao K, Li Z, Niu X X, Ryan M 2019 Comput. Mater. Con. 58 809

    [10]

    Xu G, Chen X B, Li J, Wang C, Yang Y X, Li Z 2015 Quantum Inf. Process 14 4297Google Scholar

    [11]

    Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 7 13634Google Scholar

    [12]

    Liu H W, Qu W X, Dou T Q, Wang J P, Zhang Y, Ma H Q 2018 Chin. Phys. B 27 212

    [13]

    Zhang H, Mao Y, Hang D, Guo Y, Wu X D, Zhang L 2018 Chin. Phys. B 27 90307Google Scholar

    [14]

    Lo H 1999 Science 283 2050Google Scholar

    [15]

    Norbert L 2000 Phys. Rev. A 61 052304Google Scholar

    [16]

    Shor P W, Preskill J 2000 Appl. Phys. Lett. 85 441Google Scholar

    [17]

    Renner R 2005 Phys. Rev. A 72 012332Google Scholar

    [18]

    吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2016 物理学报 65 100302Google Scholar

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302Google Scholar

    [19]

    Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar

    [20]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Appl. Phys. Lett. 85 1330Google Scholar

    [21]

    Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V 2010 Nat. Photon. 4 686Google Scholar

    [22]

    Wang J D, Wang H, Qin X J, Wei Z J, Zhang Z M 2016 Eur. Phys. J. D 70 1Google Scholar

    [23]

    Vadim M, Hjelme D R 2005 J. Mod. Opt. 52 691Google Scholar

    [24]

    Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf. Comput. 7 73

    [25]

    Hadfield R H 2009 Nat. Photon. 3 696Google Scholar

    [26]

    Newman R 1955 Phys. Rev. 100 700Google Scholar

    [27]

    Chynoweth A G, Mckay K G 1956 Phys. Rev. 102 369Google Scholar

    [28]

    Childs P A, Eccleston W 1984 J. Appl. Phys. 55 4304Google Scholar

    [29]

    Waldschmidt M, Wittig S 1968 Nucl. Instrum. Meth. 64 189Google Scholar

    [30]

    Gautam D K, Khokle W S, Garg K B 1988 Solid State Electron 31 219Google Scholar

    [31]

    Lacaita A L, Zappa F, Bigliardi S, Manfredi M 1993 IEEE Trans. Electron Dev. 40 577

    [32]

    Lacaita A, Cova S, Spinelli A, Zappa F 1993 Appl. Phys. Lett. 62 606Google Scholar

    [33]

    Villa S, Lacaita A L, Pacelli A 1995 Phys. Rev. B 52 10993Google Scholar

    [34]

    Akil N, Kerns S E, Kerns D V, Charles J P 1998 Appl. Phys. Lett. 73 871Google Scholar

    [35]

    Kurtsiefer C, Zarda P, Mayer S, Weinfurter H 2001 J. Mod. Opt. 48 2039

    [36]

    Acerbi F, Tosi A, Zappa F 2013 IEEE Photon. Tech. L. 25 1778Google Scholar

    [37]

    Meda A, Degiovanni I P, Tosi A, Yuan Z, Brida G, Genovese M 2017 Light-Sci. Appl. 6 e16261Google Scholar

    [38]

    Marini L, Camphausen R, Xiong C, Eggleton B J, Palomba S 2016 Conference on Optical Fibre Technology Australian OSA, September, 2016pAW5C-4

    [39]

    Shi Y, Lim J Z J, Poh H S, Tan P K, Tan P A, Ling A, Kurtsiefer C 2017 Opt. Express 25 30388Google Scholar

    [40]

    Pinheiro P V P, Chaiwongkhot P, Sajeed S, Horn R T, Bourgoin J P, Jennewein T, Makarov V 2018 Opt. Express 26 21020Google Scholar

    [41]

    Chen J, Wu G, Li Y, Wu E, Zeng H 2007 Opt. Express 15 17928Google Scholar

    [42]

    Temporao G P 2009 New J. Phys. 11 045015Google Scholar

    [43]

    Chen J, Wu G, Xu L, Gu X, Wu E, Zeng H 2009 New J. Phys. 11 065004Google Scholar

  • 图 1  在时分复用的光纤偏振编码QKD中利用反向荧光窃取偏振信息, 其中LD1–5为激光器; ATT1–7为可调谐光衰减器; PBS1–6为偏振分束器; PC1–8为手动偏振控制器; BS1–9为分束器; EPC1–4为电动偏振控制器; AMP为电压放大器; APD1–14为雪崩光电探测器; CIR为环形器

    Figure 1.  Polarization information is obtained by backflash in a TDM fiber polarization coded QKD. LD1–5, laser; ATT1–7, variable optical attenuators; PBS1–6, polarization beam splitters; PC1–8, manual polarization-controllers; BS1–9, beam splitters; EPC1–4, electronic polarization-controllers; AMP, voltage amplifier; APD1–14, avalanche photodetector; CIR, circulator.

    图 2  探测光纤偏振编码QKD中携带有偏振信息的反向荧光概率 LD为激光器(QCL-102); ATT为衰减器(SM3301); APD1–3为单光子探测器(ID200, ID200, ID201); CLOCK为时钟信号源(DG645); OSC为示波器(WAVERUNNER 8404 M); 电线长度相同

    Figure 2.  Probability detection of the backflash of the polarization-encoded QKD carrying polarization information. LD, laser (qcl-102); ATT, attenuator (SM3301); APD1–3, avalanche photodetector (ID200, ID200, ID201); CLOCK, clock (DG645); OSC, oscilloscope (WAVERUNNER 8404 M); the cables are the same length.

    图 3  Eve和Bob之间的符合计数直方图, 第三个峰为探测到的反向荧光光子数分布, 其他峰值为光学仪器的端面反射光

    Figure 3.  Coincidence count histogram between Bob and Eve. The third peak is the detected backflash photon number distribution, and the other peaks denote the reflected light of the optical instrument.

  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [2]

    Xu G, Chen X B, Dou Z, Yang Y X, Li Z 2015 Quantum Inf. Process 14 2959Google Scholar

    [3]

    岳孝林, 王金东, 魏正军, 郭邦红, 刘颂豪 2012 物理学报 61 184215

    Yue X L, WangJ D, Wei Z J, Guo B H, Liu S H 2012 Acta Phys. Sin. 61 184215

    [4]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 物理学报 66 230303Google Scholar

    Yang L, Ma H X, Zhen C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [5]

    邓富国, 李熙涵, 李涛 2018 物理学报 67 130301Google Scholar

    Deng G F, Li X H, Li T 2018 Acta Phys. Sin. 67 130301Google Scholar

    [6]

    Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4

    [7]

    Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018 Quantum Inf. Process 17 225Google Scholar

    [8]

    Chen X B, SunY R, Xu G, Jia H Y, Qu Z, Yang Y X 2017 Quantum Inf. Process 16 244Google Scholar

    [9]

    Xu G, Xiao K, Li Z, Niu X X, Ryan M 2019 Comput. Mater. Con. 58 809

    [10]

    Xu G, Chen X B, Li J, Wang C, Yang Y X, Li Z 2015 Quantum Inf. Process 14 4297Google Scholar

    [11]

    Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 7 13634Google Scholar

    [12]

    Liu H W, Qu W X, Dou T Q, Wang J P, Zhang Y, Ma H Q 2018 Chin. Phys. B 27 212

    [13]

    Zhang H, Mao Y, Hang D, Guo Y, Wu X D, Zhang L 2018 Chin. Phys. B 27 90307Google Scholar

    [14]

    Lo H 1999 Science 283 2050Google Scholar

    [15]

    Norbert L 2000 Phys. Rev. A 61 052304Google Scholar

    [16]

    Shor P W, Preskill J 2000 Appl. Phys. Lett. 85 441Google Scholar

    [17]

    Renner R 2005 Phys. Rev. A 72 012332Google Scholar

    [18]

    吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2016 物理学报 65 100302Google Scholar

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302Google Scholar

    [19]

    Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar

    [20]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Appl. Phys. Lett. 85 1330Google Scholar

    [21]

    Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V 2010 Nat. Photon. 4 686Google Scholar

    [22]

    Wang J D, Wang H, Qin X J, Wei Z J, Zhang Z M 2016 Eur. Phys. J. D 70 1Google Scholar

    [23]

    Vadim M, Hjelme D R 2005 J. Mod. Opt. 52 691Google Scholar

    [24]

    Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf. Comput. 7 73

    [25]

    Hadfield R H 2009 Nat. Photon. 3 696Google Scholar

    [26]

    Newman R 1955 Phys. Rev. 100 700Google Scholar

    [27]

    Chynoweth A G, Mckay K G 1956 Phys. Rev. 102 369Google Scholar

    [28]

    Childs P A, Eccleston W 1984 J. Appl. Phys. 55 4304Google Scholar

    [29]

    Waldschmidt M, Wittig S 1968 Nucl. Instrum. Meth. 64 189Google Scholar

    [30]

    Gautam D K, Khokle W S, Garg K B 1988 Solid State Electron 31 219Google Scholar

    [31]

    Lacaita A L, Zappa F, Bigliardi S, Manfredi M 1993 IEEE Trans. Electron Dev. 40 577

    [32]

    Lacaita A, Cova S, Spinelli A, Zappa F 1993 Appl. Phys. Lett. 62 606Google Scholar

    [33]

    Villa S, Lacaita A L, Pacelli A 1995 Phys. Rev. B 52 10993Google Scholar

    [34]

    Akil N, Kerns S E, Kerns D V, Charles J P 1998 Appl. Phys. Lett. 73 871Google Scholar

    [35]

    Kurtsiefer C, Zarda P, Mayer S, Weinfurter H 2001 J. Mod. Opt. 48 2039

    [36]

    Acerbi F, Tosi A, Zappa F 2013 IEEE Photon. Tech. L. 25 1778Google Scholar

    [37]

    Meda A, Degiovanni I P, Tosi A, Yuan Z, Brida G, Genovese M 2017 Light-Sci. Appl. 6 e16261Google Scholar

    [38]

    Marini L, Camphausen R, Xiong C, Eggleton B J, Palomba S 2016 Conference on Optical Fibre Technology Australian OSA, September, 2016pAW5C-4

    [39]

    Shi Y, Lim J Z J, Poh H S, Tan P K, Tan P A, Ling A, Kurtsiefer C 2017 Opt. Express 25 30388Google Scholar

    [40]

    Pinheiro P V P, Chaiwongkhot P, Sajeed S, Horn R T, Bourgoin J P, Jennewein T, Makarov V 2018 Opt. Express 26 21020Google Scholar

    [41]

    Chen J, Wu G, Li Y, Wu E, Zeng H 2007 Opt. Express 15 17928Google Scholar

    [42]

    Temporao G P 2009 New J. Phys. 11 045015Google Scholar

    [43]

    Chen J, Wu G, Xu L, Gu X, Wu E, Zeng H 2009 New J. Phys. 11 065004Google Scholar

  • [1] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Asymmetric channel phase matching quantum key distribution. Acta Physica Sinica, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [2] Meng Jie, Xu Le-Chen, Zhang Cheng-Jun, Zhang Chun-Hui, Wang Qin. Overview of applications of heralded single photon source in quantum key distribution. Acta Physica Sinica, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [3] Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback. Acta Physica Sinica, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [4] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [5] Shen Qi-Qi, Zhang Yi, Wang Jin-Dong, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Experimental research on disturbance resistant polarization modulation mode for quantum key distribution. Acta Physica Sinica, 2021, 70(18): 180302. doi: 10.7498/aps.70.20210749
    [6] Du Cong, Wang Jin-Dong, Qin Xiao-Juan, Wei Zheng-Jun, Yu Ya-Fei, Zhang Zhi-Ming. A simple protocol for measuring device independent quantum key distribution based on hybrid encoding. Acta Physica Sinica, 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [7] Zhou Fei, Yong Hai-Lin, Li Dong-Dong, Yin Juan, Ren Ji-Gang, Peng Cheng-Zhi. Study on quantum key distribution between different media. Acta Physica Sinica, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [8] Zhao Gu-Hao, Zhao Shang-Hong, Yao Zhou-Shi, Meng Wen, Wang Xiang, Zhu Zhi-Hang, Liu Feng. Subcarrier multiplexing quantum key distribution based on polarization coding. Acta Physica Sinica, 2012, 61(24): 240306. doi: 10.7498/aps.61.240306
    [9] Hu Hua-Peng, Wang Jin-Dong, Huang Yu-Xian, Liu Song-Hao, Lu Wei. Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source. Acta Physica Sinica, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [10] Wang Jin-Dong, Wei Zheng-Jun, Zhang Hui, Zhang Hua-Ni, Chen Shuai, Qin Xiao-Juan, Guo Jian-Ping, Liao Chang-Jun, Liu Song-Hao. The influence of the time delay through long trunk fiber on the phase-coding quantum key distribution system. Acta Physica Sinica, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [11] Hu Hua-Peng, Zhang Jing, Wang Jin-Dong, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao, Lu Wei. Experimental quantum key distribution with double protocol. Acta Physica Sinica, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [12] Zhang Jing, Wang Fa-Qiang, Zhao Feng, Lu Yi-Qun, Liu Song-Hao. Quantum key distribution based on time coding and phase coding. Acta Physica Sinica, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [13] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [14] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [15] Lin Qing-Qun, Wang Fa-Qiang, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. Deterministic quantum key distribution based on random phase coding. Acta Physica Sinica, 2007, 56(10): 5796-5801. doi: 10.7498/aps.56.5796
    [16] Lin Yi-Man, Liang Rui-Sheng, Lu Yi-Qun, Lu Hong, Guo Bang-Hong, Liu Song-Hao. An auto-compensating and efficient differential phase shift quantum key distribution system. Acta Physica Sinica, 2007, 56(7): 3931-3936. doi: 10.7498/aps.56.3931
    [17] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [18] Li Ming-Ming, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Chen Xia, Liang Rui-Sheng, Liu Song-Hao. A highly stable differential phase shift key distribution QKD system. Acta Physica Sinica, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [19] Ma Hai-Qiang, Li Ya-Ling, Zhao Huan, Wu Ling-An. A quantum key distribution system based on two polarization beam splitters. Acta Physica Sinica, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
    [20] Tang Zhi-Lie, Li Ming, Wei Zheng-Jun, Lu Fei, Liao Chang-Jun, Liu Song-Hao. The quantum key distribution system based on polarization states produced by phase modulation. Acta Physica Sinica, 2005, 54(6): 2534-2539. doi: 10.7498/aps.54.2534
Metrics
  • Abstract views:  6389
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2019
  • Accepted Date:  12 April 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回