Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives

Zhao Ke Song Jun Zhang Han

Citation:

Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives

Zhao Ke, Song Jun, Zhang Han
PDF
HTML
Get Citation
  • Organic materials with strong two-photon absorption response and aggregation induced emission have aroused a great deal of interest in recent years, for their many potential applications such as two-photon fluorescence microscopy, up-conversion laser, photodynamic therapy, etc. The tetraphenylethylene units are usually employed in two-photon absorption and aggregation induced emission materials because of their good electron-donating capability and special propeller starburst structures. Theoretical study on the relationship between molecular structure and two-photon absorption property is of great importance for guiding the experimental design and synthesis of functional materials. In this paper, the two-photon absorption properties of a series of organic molecules containing tetraphenylethylene and cyano groups are studied by employing the density functional response theory in combination with the polarizable continuum model. The molecular geometries are optimized at a hybrid B3LYP level with 6-31g(d, p) basis set in the Gaussian 16 program. The two-photon absorption cross sections are calculated by response theory through using the CAM-B3LYP functional with 6-31g(d) basis set in the Dalton program. The effect of donor position and number on two-photon absorption properties are investigated. In addition, by increasing the planarity and conjugated length of the molecule, as well as by enhancing the strength of the electron donor, we design three molecular structures and calculate their two-photon absorption properties. The results show that the donor position and number have important effects on two-photon absorption properties. The methoxy donor at the end of the molecule can increase the two-photon absorption intensity effectively. As the number of substituents increases, the position of the two-photon absorption peak is red-shifted. The effects of adding electron donor groups on different side positions have a significant difference in the two-photon absorption property. Comparing with the experimental molecules, the two-photon absorption cross sections of the designed molecules are greatly enhanced. When the tetraphenylethylene group is replaced by the triphenylamine group, the two-photon absorption peak is greatly red-shifted, and the two-photon absorption intensity is significantly increased. Since all of these molecules contain tetraphenylethylene or triphenylamine group with propeller structure, they can have both two-photon absorption and aggregation induced emission properties. This study provides theoretical guidelines for synthesizing a new type of active two-photon absorption and aggregation induced emission material.
      Corresponding author: Zhao Ke, zhaoke@sdnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM026)
    [1]

    Kim S, Zheng Q, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N 2006 Adv. Funct. Mater. 16 2317

    [2]

    Kim S, Pudavar H E, Bonoiu A, Prasad P N 2007 Adv. Mater. 19 3791

    [3]

    Hu R, Maldonado J, Rodriguez M, Deng C, Jim C W, Lam J Y, Yuen M F, Ramos-Ortiz G, Tang B Z 2012 J. Mater. Chem. 22 232Google Scholar

    [4]

    Zhang Y, Li J, Tang B Z, Wong K S 2014 J. Phys. Chem. C 118 26981

    [5]

    Jiang Y, Wang Y, Hua J, Tang J, Li B, Qian S, Tian H 2010 Chem. Commun. 46 4689Google Scholar

    [6]

    Wang B, Wang Y, Hua J, Jiang Y, Huang J, Qian S, Tian H 2011 Chem. Eur. J. 17 2647Google Scholar

    [7]

    Xu B, Xie M, He J, Xu B, Chi Z, Tian W, Jiang L, Zhao F, Liu S, Zhang Y 2013 Chem. Commun. 49 273Google Scholar

    [8]

    Jiang T, Qu Y, Li B, Gao Y, Hua J 2015 RSC Adv. 5 1500

    [9]

    Qu C, Gao Z, Chen Y 2018 J. Lumin. 194 40Google Scholar

    [10]

    Gu B, Wu W, Xu G, Feng G, Yin F, Chong P H J, Qu J, Yong K T, Liu B 2017 Adv. Mater. 29 1701076Google Scholar

    [11]

    He G S, Tan L S, Zheng Q, Prasad P N 2008 Chem. Rev. 108 1245Google Scholar

    [12]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244Google Scholar

    [13]

    Hong Y, Lam J W Y, Tang B Z 2009 Chem. Commun. 29 4332

    [14]

    Hong Y, Lam J W Y, Tang B Z 2011 Chem. Soc. Rev. 40 5361Google Scholar

    [15]

    Wang F Q, Zhao K, Zhu M Y, Wang C K 2016 J. Phys. Chem. B 120 9708Google Scholar

    [16]

    Song J, Zhao K, Zhang H, Wang C K 2019 Mol. Phys. 117 672Google Scholar

    [17]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porrès L,Pons T, Mertz J, Tretiak S, Blancharddesce M 2005 J. Phys. Chem. A 109 3024Google Scholar

    [18]

    Terenziani F, Morone M, Gmouh S, Blancharddesce M 2006 Chem. Phys. Chem. 7 685Google Scholar

    [19]

    Chattopadhyaya M, Alam M M, Chakrabarti S 2011 J. Phys. Chem. A 115 2607Google Scholar

    [20]

    Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718Google Scholar

    [21]

    Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235Google Scholar

    [22]

    Monson P R, Mcclain W M 1970 J. Chem. Phys. 53 29Google Scholar

    [23]

    Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016 http://www.gaussian.com/ [2019-3-31]

    [24]

    Dalton, a Molecular Electronic Structure Program, Release DALTON2013.0, 2013 http://daltonprogram.org/ [2019-3-31]

    [25]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814Google Scholar

    [26]

    武香莲, 赵珂, 贾海洪, 王富青 2015 物理学报 64 233301Google Scholar

    Wu X L, Zhao K, Jia H H, Wang F Q 2015 Acta Phys. Sin. 64 233301Google Scholar

    [27]

    Zhu M Y, Zhao K, Song J, Wang C K 2018 Chin. Phys. B 27 023302Google Scholar

    [28]

    Zhao K, Song J, Zhu M Y, Zhang H, Wang C K 2018 Chin. Phys. B 27 103301Google Scholar

    [29]

    Zhang Y J, Zhang Q Y, Ding H J, Song X N, Wang C K 2015 Chin. Phys. B 24 023301Google Scholar

    [30]

    Chung S J, Kim K S, Lin T C, He G S, Swiatkiewicz J, Prasad P N 1999 J. Phys. Chem. B. 103 10741Google Scholar

    [31]

    Adronov A, Fréchet J M J, He G S, Kim K S, Chung S J, Swiatkiewicz J, Prasad P N 2000 Chem. Mater. 12 2838Google Scholar

    [32]

    Chung S J, Lin T C, Kim K S, He G S, Swiatkiewicz J, Prasad P N, Baker G A, Bright F V 2001 Chem. Mater. 13 4071Google Scholar

  • 图 1  T和T1−T5分子的化学结构式

    Figure 1.  Chemical structures of T and T1−T5 molecules.

    图 2  优化的T和T1−T5分子的结构

    Figure 2.  Optimized geometries of the T and T1−T5 molecules

    图 3  R, S和U分子的化学结构式和优化的几何结构

    Figure 3.  Chemical structures and optimized geometries of the R, S and U molecules.

    图 4  T分子的A和B两部分

    Figure 4.  The A and B parts of the T molecule.

    图 5  X, Y和Z分子的化学结构式和优化几何结构

    Figure 5.  Chemical structures and optimized geometries of the X, Y and Z molecules.

    图 6  X, Y, Z和T分子的TPA谱

    Figure 6.  TPA spectra of the X, Y, Z and T molecules.

    表 1  分子六个最低激发态的TPA波长${\lambda _{{\rm{tp}}}}$(nm)和TPA截面$\sigma $(GM)

    Table 1.  The TPA wavelength ${\lambda _{{\rm{tp}}}}$(nm) and the TPA cross section $\sigma $(GM) of the lowest six excited states.

    TT1T2T3T4T5
    ${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM
    S1743719743696740707738672743638743629
    S26504649265110651665286534
    S3612944612858614893612873615880615827
    S4572305572334578212575259578136580175
    S5556355655574556555745575
    S65401554095422540554235412
    DownLoad: CSV

    表 2  分子六个最低激发态的TPA波长${\lambda _{{\rm{tp}}}}$(nm)和TPA截面$\sigma $(GM)

    Table 2.  The TPA wavelength ${\lambda _{{\rm{tp}}}}$(nm) and the TPA cross section $\sigma $(GM) of the lowest six excited states.

    RSU
    ${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM
    S1719500729646754769
    S263127642196587
    S3595597603785621931
    S45574567640580118
    S555685355745574
    S6540995412954111
    DownLoad: CSV

    表 3  分子各部分的基态电荷和第一激发态电荷(单位: e)

    Table 3.  Net charges (unit: e) for divided parts of the molecules in the ground states and in the first excited states.

    QA0/eQA1/eQA/eQB0/eQB1/eQB/e
    T0.02980.39780.3680– 0.0298– 0.3978– 0.3680
    T20.02920.39010.3609– 0.0292– 0.3901– 0.3609
    T40.02940.40660.3772– 0.0294– 0.4066– 0.3772
    R0.02710.31360.2865– 0.0271– 0.3136– 0.2865
    S0.02840.35260.3242– 0.0284– 0.3526– 0.3242
    U0.03050.43400.4305– 0.0305– 0.4340– 0.4305
    DownLoad: CSV

    表 4  分子六个最低激发态的TPA波长${\lambda _{{\rm{tp}}}}$(nm)和TPA截面$\sigma $(GM)

    Table 4.  The TPA wavelength ${\lambda _{{\rm{tp}}}}$(nm) and the TPA cross section $\sigma $(GM) of the lowest six excited states.

    XYZ
    ${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM${\lambda _{{\rm{tp}}}}$/nm$\sigma $/GM
    S174794782415438022259
    S2663406347376021362
    S3615190657917635821
    S456015769154057
    S554265570606527738
    S6525502560505464
    DownLoad: CSV
  • [1]

    Kim S, Zheng Q, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N 2006 Adv. Funct. Mater. 16 2317

    [2]

    Kim S, Pudavar H E, Bonoiu A, Prasad P N 2007 Adv. Mater. 19 3791

    [3]

    Hu R, Maldonado J, Rodriguez M, Deng C, Jim C W, Lam J Y, Yuen M F, Ramos-Ortiz G, Tang B Z 2012 J. Mater. Chem. 22 232Google Scholar

    [4]

    Zhang Y, Li J, Tang B Z, Wong K S 2014 J. Phys. Chem. C 118 26981

    [5]

    Jiang Y, Wang Y, Hua J, Tang J, Li B, Qian S, Tian H 2010 Chem. Commun. 46 4689Google Scholar

    [6]

    Wang B, Wang Y, Hua J, Jiang Y, Huang J, Qian S, Tian H 2011 Chem. Eur. J. 17 2647Google Scholar

    [7]

    Xu B, Xie M, He J, Xu B, Chi Z, Tian W, Jiang L, Zhao F, Liu S, Zhang Y 2013 Chem. Commun. 49 273Google Scholar

    [8]

    Jiang T, Qu Y, Li B, Gao Y, Hua J 2015 RSC Adv. 5 1500

    [9]

    Qu C, Gao Z, Chen Y 2018 J. Lumin. 194 40Google Scholar

    [10]

    Gu B, Wu W, Xu G, Feng G, Yin F, Chong P H J, Qu J, Yong K T, Liu B 2017 Adv. Mater. 29 1701076Google Scholar

    [11]

    He G S, Tan L S, Zheng Q, Prasad P N 2008 Chem. Rev. 108 1245Google Scholar

    [12]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244Google Scholar

    [13]

    Hong Y, Lam J W Y, Tang B Z 2009 Chem. Commun. 29 4332

    [14]

    Hong Y, Lam J W Y, Tang B Z 2011 Chem. Soc. Rev. 40 5361Google Scholar

    [15]

    Wang F Q, Zhao K, Zhu M Y, Wang C K 2016 J. Phys. Chem. B 120 9708Google Scholar

    [16]

    Song J, Zhao K, Zhang H, Wang C K 2019 Mol. Phys. 117 672Google Scholar

    [17]

    Katan C, Terenziani F, Mongin O, Werts M H V, Porrès L,Pons T, Mertz J, Tretiak S, Blancharddesce M 2005 J. Phys. Chem. A 109 3024Google Scholar

    [18]

    Terenziani F, Morone M, Gmouh S, Blancharddesce M 2006 Chem. Phys. Chem. 7 685Google Scholar

    [19]

    Chattopadhyaya M, Alam M M, Chakrabarti S 2011 J. Phys. Chem. A 115 2607Google Scholar

    [20]

    Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718Google Scholar

    [21]

    Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235Google Scholar

    [22]

    Monson P R, Mcclain W M 1970 J. Chem. Phys. 53 29Google Scholar

    [23]

    Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016 http://www.gaussian.com/ [2019-3-31]

    [24]

    Dalton, a Molecular Electronic Structure Program, Release DALTON2013.0, 2013 http://daltonprogram.org/ [2019-3-31]

    [25]

    Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814Google Scholar

    [26]

    武香莲, 赵珂, 贾海洪, 王富青 2015 物理学报 64 233301Google Scholar

    Wu X L, Zhao K, Jia H H, Wang F Q 2015 Acta Phys. Sin. 64 233301Google Scholar

    [27]

    Zhu M Y, Zhao K, Song J, Wang C K 2018 Chin. Phys. B 27 023302Google Scholar

    [28]

    Zhao K, Song J, Zhu M Y, Zhang H, Wang C K 2018 Chin. Phys. B 27 103301Google Scholar

    [29]

    Zhang Y J, Zhang Q Y, Ding H J, Song X N, Wang C K 2015 Chin. Phys. B 24 023301Google Scholar

    [30]

    Chung S J, Kim K S, Lin T C, He G S, Swiatkiewicz J, Prasad P N 1999 J. Phys. Chem. B. 103 10741Google Scholar

    [31]

    Adronov A, Fréchet J M J, He G S, Kim K S, Chung S J, Swiatkiewicz J, Prasad P N 2000 Chem. Mater. 12 2838Google Scholar

    [32]

    Chung S J, Lin T C, Kim K S, He G S, Swiatkiewicz J, Prasad P N, Baker G A, Bright F V 2001 Chem. Mater. 13 4071Google Scholar

  • [1] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] Yang Zhe, Zhang Xiang, Xiao Si, He Jun, Gu Bing. Ultrafast dynamics of free carriers induced by two-photon excitation in bulk ZnSe crystal. Acta Physica Sinica, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [3] Wu Xiang-Lian, Zhao Ke, Jia Hai-Hong, Wang Fu-Qing. Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center. Acta Physica Sinica, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [4] Jia Ke-Ning, Liu Zhong-Bo, Liang Ying, Tong Dian-Min, Fan Xi-Jun. Effect of Doppler broadening on VIC-dependent two-photon absorption in Y-type four-level system. Acta Physica Sinica, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [5] Zhao Ke, Liu Peng-Wei, Han Guang-Chao. Applications of molecular dynamics simulation in nonlinear optics. Acta Physica Sinica, 2011, 60(12): 124216. doi: 10.7498/aps.60.124216
    [6] Zheng Jia-Jin, Lu Yun-Qing, Li Pei-Li. Optical nonlinearities of excited state intramolecular proton transfer molecule HBT. Acta Physica Sinica, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [7] Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang. Two-photon absorption coefficient spectra of indirect transitions in silicon. Acta Physica Sinica, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [8] Miao Quan, Zhao Peng, Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Two-photon area evolution and optical limiting of ultrashort laser pulses in DBASVP molecule media. Acta Physica Sinica, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [9] Sun Yuan-Hong, Wang Chuan-Kui. Theoretical study on two-photon absorption properties of novel multi-branched compounds. Acta Physica Sinica, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [10] Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Effect of time-dependent ionization on properties of the ultrashort pulse propagation and optical power limiting in a two-photon absorption molecular medium. Acta Physica Sinica, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [11] Wu Wen-Zhi, Zheng Zhi-Ren, Jin Qin-Han, Yan Yu-Xi, Liu Wei-Long, Zhang Jian-Ping, Yang Yan-Qiang, Su Wen-Hui. The property of third-order optical nonlinear susceptibility of water soluble CdTe quantum dots. Acta Physica Sinica, 2008, 57(2): 1177-1182. doi: 10.7498/aps.57.1177
    [12] Cui Hao-Yang, Li Zhi-Feng, Li Ya-Jun, Liu Zhao-Lin, Chen Xiao-Shuang, Lu Wei, Ye Zhen-Hua, Hu Xiao-Ning, Wang Chong. Franz-Keldysh effect in two-photon absorption. Acta Physica Sinica, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [13] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [14] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [15] Zhao Ke, Sun Yuan-Hong, Wang Chuan-Kui, Luo Yi, Zhang Xian, Yu Xiao-Qiang, Jiang Min-Hua. Studies on two-photon absorption cross-sections of 1,4-dimethoxy-2,5-divinyl-benzene derivatives. Acta Physica Sinica, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] Su Yan, Wang Chuan-Kui, Wang Yan-Hua, Tao Li-Min. The influence of symmetries of the substituted donor and acceptor on two-photon absorption cross sections of trans-stilbene derivatives. Acta Physica Sinica, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] Jiang Jun, Li Ning, Chen Gui-Bin, Lu Wei, Wang Ming-Kai, Yang Xue-Ping, Wu Gang, Fan Yao-Hui, Li Yong-Gui, Yuan Xian-Zhang. Free-electron laser induced nonlinear optical absorption in semiconductors. Acta Physica Sinica, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [18] He Guo-Hua, Zhang Jun-Xiang, Ye Li-Hua, Cui Yi-Ping, Li Zhen-Hua, Lai Jian-Cheng, He An-Zhi. Broadband two-photon absorption and optical power limiting properties of a novel organic compound. Acta Physica Sinica, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [19] Zhang Yan-Liang, Jiang Li, Niu Yue-Ping, Sun Zhen-Rong, Ding Liang-En, Wang Zu-Geng. Interference enhancement of two-photon absorption caused by a pair of coherent superposition levels in Na. Acta Physica Sinica, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [20] JIA TIAN-QING, CHEN HONG, WU XIANG. PHOTON ABSORPTION OF CONDUCTION BAND ELECTRONS AND ITS EFFECTS ON THE DAMAGE PRO CESSES. Acta Physica Sinica, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
Metrics
  • Abstract views:  6723
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2019
  • Accepted Date:  03 July 2019
  • Available Online:  01 September 2019
  • Published Online:  20 September 2019

/

返回文章
返回