Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of low-noise superconducting quantum interference device magnetometer

Han Hao-Xuan Zhang Guo-Feng Zhang Xue Liang Tian-Tian Ying Li-Liang Wang Yong-Liang Peng Wei Wang Zhen

Citation:

Design and fabrication of low-noise superconducting quantum interference device magnetometer

Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen
PDF
HTML
Get Citation
  • Superconducting quantum interference device (SQUID) is the most sensitive magnetic flux sensor known, which is widely used in biomagnetism, low-field nuclear magnetic resonance, geophysics, etc. In this paper, we introduce a high-sensitivity SQUID magnetometer, which consists of an SQUID and a flux transformer. The SQUID is first-order gradiometer configuration, which is insensitive to interference noise. The flux transformer includes a multi-turn spiral input coil and a large-sized pickup coil. And the input coil is inductively coupled to the SQUID through mutual inductance. We present an SQUID magnetometer fabricated with Nb/Al-AlOx/Nb Josephson junction technology on a 4-inch silicon wafer at our superconducting electronics facilities. We develop a fabrication process based on selective niobium etching process consisting of five mask levels. In the first two mask levels, the trilayer is patterned by a dry etch to define base electrode, contact pads, and interconnects. The shunt resistor and a dielectric insulating layer are then deposited and patterned by using lift-off and dry etchant, respectively. Finally, the niobium wiring layer is deposited and patterned by using reactive ion etching to define input, pickup and feedback coils. The measurement of the SQUID magnetometer is performed inside a magnetically shielded room. The operating temperature is realized by immersing the SQUID into the liquid helium (4.2 K). Moreover, a superconducting niobium tube is employed to protect the SQUID from being disturbed by external environments. A homemade readout electronics instrument with low input voltage noise is used to characterize the SQUID magnetometer. The results of low-temperature measurements indicate that the magnetometer has a magnetic field sensitivity of 0.36 nT/Φ0 and a white flux noise of 8 μΦ0/√Hz,corresponding to a white field noise of 2.88 fT/√Hz. This kind of SQUID magnetometer is suitable for multi-channel systems, e.g., magnetocardiography, magnetoencephalography, etc. Although the SQUID process development benefits from the rapid advance of semiconductor process technology, the uniformity of the SQUID on one wafer is fluctuated due to the film deposition. Now, we have realized a best SQUID yield of 50% on a 4-inch wafer. In the future, the SQUID chip yield should be improved by well controlling the optimizing process. The device yield is expected to reach as high as 80%.
      Corresponding author: Zhang Guo-Feng, gfzhang@mail.sim.ac.cn
    [1]

    Zhang S, Zhang G, Wang Y, Liu M, Li H, Qiu Y, Zeng, J, Kong X, Xie X 2013 Chin. Phys. B 22 128501Google Scholar

    [2]

    Dong H, Wang Y, Zhang S, Sun Y, Xie X 2008 Supercond. Sci. Technol. 21 115009Google Scholar

    [3]

    荣亮亮, 蒋坤, 裴易峰, 伍俊, 王远 2016 仪器仪表学报 37 12

    Rong L, Jiang K, Pei Y, Wu J, Wang Y 2016 Chin. J. Sci. Instrum. 37 12

    [4]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [5]

    Tesche C D, Clarke J 1977 J. Low Temp. Phys. 27 301

    [6]

    Drung D, Matz H, Koch H 1995 Rev. Sci. Instrum. 66 3008Google Scholar

    [7]

    Schmelz M, Stolz R, Zakosarenko V, Schoenau T, Anders A, Fritzsch L, Mueck M, Meyer H G 2011 Supercond. Sci. Technol. 24 065009Google Scholar

    [8]

    Xie X, Zhang Y, Wang H, Wang Y, Mueck M, Dong H, Krause H J, Braginski A I, Offenhaeusser A, Jiang M 2010 Supercond. Sci. Technol. 23 065016Google Scholar

    [9]

    Zeng J, Zhang Y, Mueck M, Krause H J, Braginski A I, Kong X, Xie X, Offenhaeusser A, Jiang M 2013 Appl. Phys. Lett. 103 042601Google Scholar

    [10]

    Gurvitch M, Washington M A, Hugins H A 1983 Appl. Phys. Lett. 42 472Google Scholar

    [11]

    Zhang G, Zhang Y, Zhang S, Krause H J, Wang Y, Liu C, Zeng J, Qiu Y, Kong X, Dong H, Xie X, Offenhaeusser A, Jiang M 2012 Physica C 480 10Google Scholar

    [12]

    Xiong W, Xu W, Wu Y, Li G, Ying L, Peng W, Ren J, Wang Z 2018 IEEE Trans. Appl. Supercond. 28 1300605

    [13]

    Yuda M, Kuroda K, Nakano J 1987 Jpn. J. Appl. Phys. 2 6

    [14]

    Kuroda K, Yuda M 1988 Jpn. J. Appl. Phys. 63 2352Google Scholar

    [15]

    Imamura T, Hasuo S 1989 IEEE Trans. Magn. 3 3029

    [16]

    Booi P A A, Livingston C A, Benz S P 1993 IEEE Trans. Appl. Supercond. MAG-25 1119

    [17]

    Sukuda K, Kawai J, Uehara G, Kado H 1993 IEEE Trans. Magn. 3 2944

    [18]

    Amos R S, Breyer P E, Huang H H, Lichtenberger A W 1995 IEEE Trans. Magn. 5 2326

    [19]

    Kang X, Ying L, Wang H, Zhang G, Peng W, Kong X, Xie X, Wang Z 2014 Physica C 503 29Google Scholar

    [20]

    Zhao J, Zhang Y, Lee Y H, Krause H J 2014 Rev. Sci. Instrum. 85 054707Google Scholar

    [21]

    Clarke J, Goubau W M, Ketchen M B 1976 J. Low. Temp. Phys. 25 99

    [22]

    Zhang X, Zhang G, Ying L, Xiong W, Han H, Wang Y, Rong L, Xie X, Wang Z 2018 Physica C 548 1

  • 图 1  SQUID磁强计示意图

    Figure 1.  Schematic diagram of SQUID magnetometer.

    图 2  (a) SQUID磁强计设计图; (b)等效电路图

    Figure 2.  (a) Design of SQUID magnetometer and (b) the schematic diagram.

    图 3  器件工艺流程图

    Figure 3.  Process flow chart of SQUID magnetometer.

    图 4  (a)电流-电压特性曲线; (b)不同偏置电流下的电压-线圈电流(磁通)调制曲线, 其中调制周期为4.3 μA/Φ0

    Figure 4.  (a) Current-voltage curves; (b) voltage-coil current (flux) curves under different bias currents with a period of 4.3 μA/Φ0.

    图 5  SQUID磁强计噪声曲线 曲线中出现的杂峰主要是实验室震动干扰导致, 插图显示的是最佳工作点(W)时调制曲线

    Figure 5.  Noise figure of SQUID magnetometer, in which the lines between 10–200 Hz were mainly caused by vibrations in the laboratory. The inset shows the modulation curve with the best working point.

    表 1  SQUID磁强计设计参数

    Table 1.  Design parameters of SQUID~magnetometer

    参数数值单位
    约瑟夫森结Josephson junction
    尺寸AJ4 × 4μm2
    临界电流Ic8μA
    结电容C[12]0.56pF
    并联电阻R10Ω
    SQUID
    垫圈内边长a100μm
    线宽ws300μm
    总电感Ls350pH
    输入线圈
    线圈匝数N15
    线宽win3μm
    线距sin3μm
    探测线圈
    线圈尺寸Ap15 × 15mm2
    线宽wp100μm
    DownLoad: CSV

    表 2  Nb/Al-AlOx/Nb三层膜生长参数

    Table 2.  Deposition parameters of Nb/Al-AlOx/Nb trilayer.

    薄膜背景真空Ar流量Ar气压恒电流生长速率厚度
    底层Nb2.3 × 10–5 Pa10 sccm0.573 Pa1.5 A1.2 nm/s100 nm
    Al3 × 10–5 Pa10 sccm0.573 Pa0.3 A0.25 nm/s10 nm
    AlOx氧气气压:2.6 kPa; 氧化时间:12 h~2 nm
    顶层Nb2.3 × 10–5 Pa10 sccm0.573 Pa1.5 A1.2 nm/s100 nm
    DownLoad: CSV

    表 3  SQUID磁强计测试结果

    Table 3.  Measured results of SQUID magnetometer

    参数数值单位
    临界电流I032μA
    正常态电阻Rn5Ω
    反馈线圈耦合系数1/Mf4.3μA/Φ0
    最大调制峰峰值Vpp47μV
    磁通噪声√SΦ(白噪声)8μΦ0/√Hz
    磁场灵敏度1/Aeff0.36nT/Φ0
    磁场噪声√SB(白噪声)2.88fT/√Hz
    DownLoad: CSV
  • [1]

    Zhang S, Zhang G, Wang Y, Liu M, Li H, Qiu Y, Zeng, J, Kong X, Xie X 2013 Chin. Phys. B 22 128501Google Scholar

    [2]

    Dong H, Wang Y, Zhang S, Sun Y, Xie X 2008 Supercond. Sci. Technol. 21 115009Google Scholar

    [3]

    荣亮亮, 蒋坤, 裴易峰, 伍俊, 王远 2016 仪器仪表学报 37 12

    Rong L, Jiang K, Pei Y, Wu J, Wang Y 2016 Chin. J. Sci. Instrum. 37 12

    [4]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [5]

    Tesche C D, Clarke J 1977 J. Low Temp. Phys. 27 301

    [6]

    Drung D, Matz H, Koch H 1995 Rev. Sci. Instrum. 66 3008Google Scholar

    [7]

    Schmelz M, Stolz R, Zakosarenko V, Schoenau T, Anders A, Fritzsch L, Mueck M, Meyer H G 2011 Supercond. Sci. Technol. 24 065009Google Scholar

    [8]

    Xie X, Zhang Y, Wang H, Wang Y, Mueck M, Dong H, Krause H J, Braginski A I, Offenhaeusser A, Jiang M 2010 Supercond. Sci. Technol. 23 065016Google Scholar

    [9]

    Zeng J, Zhang Y, Mueck M, Krause H J, Braginski A I, Kong X, Xie X, Offenhaeusser A, Jiang M 2013 Appl. Phys. Lett. 103 042601Google Scholar

    [10]

    Gurvitch M, Washington M A, Hugins H A 1983 Appl. Phys. Lett. 42 472Google Scholar

    [11]

    Zhang G, Zhang Y, Zhang S, Krause H J, Wang Y, Liu C, Zeng J, Qiu Y, Kong X, Dong H, Xie X, Offenhaeusser A, Jiang M 2012 Physica C 480 10Google Scholar

    [12]

    Xiong W, Xu W, Wu Y, Li G, Ying L, Peng W, Ren J, Wang Z 2018 IEEE Trans. Appl. Supercond. 28 1300605

    [13]

    Yuda M, Kuroda K, Nakano J 1987 Jpn. J. Appl. Phys. 2 6

    [14]

    Kuroda K, Yuda M 1988 Jpn. J. Appl. Phys. 63 2352Google Scholar

    [15]

    Imamura T, Hasuo S 1989 IEEE Trans. Magn. 3 3029

    [16]

    Booi P A A, Livingston C A, Benz S P 1993 IEEE Trans. Appl. Supercond. MAG-25 1119

    [17]

    Sukuda K, Kawai J, Uehara G, Kado H 1993 IEEE Trans. Magn. 3 2944

    [18]

    Amos R S, Breyer P E, Huang H H, Lichtenberger A W 1995 IEEE Trans. Magn. 5 2326

    [19]

    Kang X, Ying L, Wang H, Zhang G, Peng W, Kong X, Xie X, Wang Z 2014 Physica C 503 29Google Scholar

    [20]

    Zhao J, Zhang Y, Lee Y H, Krause H J 2014 Rev. Sci. Instrum. 85 054707Google Scholar

    [21]

    Clarke J, Goubau W M, Ketchen M B 1976 J. Low. Temp. Phys. 25 99

    [22]

    Zhang X, Zhang G, Ying L, Xiong W, Han H, Wang Y, Rong L, Xie X, Wang Z 2018 Physica C 548 1

  • [1] Liu Huai-Yuan, Xiao Jian-Fei, Lü Zhao-Zheng, Lü Li, Qu Fan-Ming. Growth of Bi2O2Se nanowires and their superconducting quantum interference devices. Acta Physica Sinica, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
    [2] He An, Xue Cun. Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit. Acta Physica Sinica, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [3] Wen Hai-Hu. Brief introduction to flux pinning and vortex dynamics in high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [4] Zheng Dong-Ning. Superconducting quantum interference devices. Acta Physica Sinica, 2021, 70(1): 018502. doi: 10.7498/aps.70.20202131
    [5] Xu Da, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Wang Shi-Jian, Li Jin-Jin, Liu Jian-She, Chen Wei. A second-order gradiometric superconducting quantum interference device current sensor with cross-coupled structure. Acta Physica Sinica, 2021, 70(12): 128501. doi: 10.7498/aps.70.20201816
    [6] Liang Tian-Tian, Zhang Guo-Feng, Wu Wen-Tao, Ni Zhi, Wang Yong-Liang, Ying Li-Liang, Wu Jun, Rong Liang-Liang, Peng Wei, Gao Bo. Fabrication and experimental analysis of series superconducting quantum inteference device array. Acta Physica Sinica, 2021, 70(17): 178501. doi: 10.7498/aps.70.20210467
    [7] Liang Chao, Zhang Jie, Zhao Ke, Yang Xin-Sheng, Zhao Yong. Superconducting and flux pinning properties of FeSexTe1–x topological superconductors. Acta Physica Sinica, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [8] Li Yao-Yi, Jia Jin-Feng. Search for Majorana zero mode in the magnetic vortex of artificial topological superconductor. Acta Physica Sinica, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [9] Zhang Yong-Sheng, Qiu Yang, Zhang Chao-Xiang, Li Hua, Zhang Shu-Lin, Wang Yong-Liang, Xu Xiao-Feng, Ding Hong-Sheng, Kong Xiang-Yan. Multi-channel magnetocardiogardiography system calibration. Acta Physica Sinica, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [10] Liu Ming, Xu Xiao-Feng, Wang Yong-Liang, Zeng Jia, Li Hua, Qiu Yang, Zhang Shu-Lin, Zhang Guo-Feng, Kong Xiang-Yan, Xie Xiao-Ming. Study on transmission characteristics of matching transformer in DC superconducting quantum interference device readout. Acta Physica Sinica, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [11] Wang Yang-Jing, Xie Yong-Jun, Lei Zhen-Ya. Novel flux concentrator with a single CSRR surrounded by a resonator for radio frequency superconducting quantum interference device. Acta Physica Sinica, 2012, 61(9): 094210. doi: 10.7498/aps.61.094210
    [12] Zhang Shu-Lin, Liu Yang-Bo, Zeng Jia, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming. Detection of brain auditory evoked magnetic field based on low-Tc superconducting quantum interface device. Acta Physica Sinica, 2012, 61(2): 020701. doi: 10.7498/aps.61.020701
    [13] Zhou Shi-Ping, Qu Hai, Liao Hong-Yin. . Acta Physica Sinica, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [14] Dong Zheng-Chao. . Acta Physica Sinica, 2002, 51(4): 894-897. doi: 10.7498/aps.51.894
    [15] Liu Xu-Dong, Wang Jin, Liu Mei, Xing Ding-Yu. . Acta Physica Sinica, 2002, 51(5): 1122-1127. doi: 10.7498/aps.51.1122
    [16] Ma Peng, Yao Kun, Xie Fei-Xiang, Zhang Sheng-Yuan, Deng Peng, He Dong-Feng, Zhang Fan, Liu Yu-Yuan, Nie Rui-Juan, Wang Fu-Ren, Wang Shou-Zheng, Dai Yuan-Dong. . Acta Physica Sinica, 2002, 51(2): 224-227. doi: 10.7498/aps.51.224
    [17] Feng Yong, Zhou Lian, Yang Wan-min, Zhang Cui-ping, Wang Jing-rong, Yu Ze-ming, Wu Xiao-zu. Flux Pinning in PMP Y-Gd-Ba-Cu-O Superconductors. Acta Physica Sinica, 2000, 49(1): 146-152. doi: 10.7498/aps.49.146
    [18] QU HAI, ZHOU SHI-PING. VORTEX LATTICE IN A HIGH-Tc SUPERCONDUCTOR OF MIXED PAIRING SYMMETRY. Acta Physica Sinica, 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
    [19] DU SHENG-WANG, DAI YUAN-DONG, WANG SHI-GUANG. TO PROBE THE PHASE OF THE ORDER PARAMETER IN HIGH-TEMPERATURE SUPERCONDUCTORS BY USING r.f. SQUID. Acta Physica Sinica, 1999, 48(12): 2364-2368. doi: 10.7498/aps.48.2364
    [20] CHEN YING-FEI, S.ZAREMBINSKI. DESIGN OF THE HIGH-Tc dc-SQUID MAGNETOMETER WITH A RESISTIVELY SHUNTED INDUCTANCE. Acta Physica Sinica, 1998, 47(8): 1369-1377. doi: 10.7498/aps.47.1369
Metrics
  • Abstract views:  9151
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2019
  • Accepted Date:  06 May 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回