Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new type of micro-X-ray diffractometer focused by polycapillary optics

Jiang Qi-Li Duan Ze-Ming Shuai Qi-Lin Li Rong-Wu Pan Qiu-Li Cheng Lin

Citation:

A new type of micro-X-ray diffractometer focused by polycapillary optics

Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin
PDF
HTML
Get Citation
  • Micro-X-ray diffraction (μ-XRD) plays a significant role in measuring the phase structures of small samples or micro areas of larger samples. In this article, we propose a new type of desktop micro-X-ray diffractometer named μ-Hawk focused by polycapillary optics. It consists mainly of a microfocus X-ray tube, polycapillary optics, receiving slits, a silicon drift diode (SDD) X-ray detector integrated with single/multi-channel pulse analyzer, independently rotating θ-θ goniometer, high precision XYZ sample stage, computer programs developed by LabVIEW codes, etc. The main interface of the program has micro-X-ray diffraction analysis mode and micro energy dispersive X-ray fluorescence analysis mode. In addition, the monochromatization of X-ray, the angular resolution and the accuracy of the results of μ-Hawk are discussed. In order to demonstrate the feasibility of the instrument, the phase of micro area in the middle of the first stroke on the Chinese character “Jiao” from a 5-Jiao coin (Chinese currency) is measured by the μ-Hawk, and the phase of a copper wire 140 μm in diameter is also detected by it. After that, the phase of 1.0 mm × 0.6 mm area on the welding joint of the motherboard from an iPhone is two-dimensionally scanned by μ-Hawk. The θ-θ scanning is performed at each detected point inside the two-dimensional area. Four motors drive the X and Y axis of the sample stage as well as the θ1 and θ2 axis of the goniometer to accomplish the above functions. The results show that the micro energy dispersive X-ray fluorescence analysis mode of μ-Hawk can provide elementary reference information for the analysis of phase structure. Compared with conventional X-ray diffractometer, the μ-Hawk can detect the same diffraction peaks on the coin with lower background. Furthermore, the accurate diffraction peaks can be measured with a lower power and shorter time. The measured results can better reflect the true phase structure of the micro area. Six diffraction peaks and their phases can be clearly identified from the diffraction pattern of the copper wire. For the welding joint, the phase mapping of SnO2 (3 1 2) is acquired through data processing. Therefore, the μ-Hawk can adapt to the micro-X-ray diffraction analysis of small samples or micro areas of samples as well as the two-dimensional scanning analysis of phase mapping. The μ-Hawk exhibits the unique advantages of accomplishing accurate micro-X-ray diffraction analysis, convenient software, low working power, time saving, and small in size. It indicates a wide application prospect in the fields of materials, geosciences and heritage protection.
      Corresponding author: Cheng Lin, chenglin@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575026)
    [1]

    Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114Google Scholar

    [2]

    Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng. B 206 69Google Scholar

    [3]

    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16Google Scholar

    [4]

    Wang W Q, Ji L, Li H X, Liu X H, Zhou H D, Chen J M 2019 Chin. Phys. B 28 036802Google Scholar

    [5]

    Biberger J, Füßer H J, Klaus M, Genzel C 2017 Wear 376– 377 1502Google Scholar

    [6]

    Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697Google Scholar

    [7]

    Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143Google Scholar

    [8]

    Shen Y Y, Zhang Y X, Qi T, Qiao Y, Jia Y X, Hei H J, He Z Y, Yu S W 2016 Chin. Phys. Lett. 33 088101

    [9]

    Hampai D, Dabagov S B, Cappuccio G 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 264Google Scholar

    [10]

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Cheng L 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 442 13Google Scholar

    [11]

    Berthold C, Bjeoumikhov A, Brügemann L 2009 Part. Part. Syst. Charact. 26 107Google Scholar

    [12]

    Romano F P, Pappalardo L, Masini N, Pappalardo G, Rizzo F 2011 Microchem. J. 99 449Google Scholar

    [13]

    Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar

    [14]

    段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar

    [15]

    Wrobel P, Czyzycki M, Furman L, Kolasinski K, Lankosz M, Mrenca A, Samek L, Wegrzynek D 2012 Talanta 93 186Google Scholar

    [16]

    Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1493Google Scholar

    [17]

    Décobert J, Guillamet R, Mocuta C, Carbone G, Guerault H 2013 J. Cryst. Growth 370 154Google Scholar

    [18]

    江超华 2014 多晶X射线衍射技术与应用 (北京: 化学工业出版社) 第169页

    Jiang C H 2014 The Technique and Application of Polycrystalline X-ray Diffraction (Beijing: Chemical Industry Press) p169 (in Chinese)

    [19]

    徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar

    Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar

    [20]

    Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar

    [21]

    Baated A, Hamasaki K, Kim S S, Kim K S, Suganuma K 2011 J. Electron. Mater. 40 2278Google Scholar

    [22]

    Zhou W, Mahato D N, Macdonald C A 2010 Thin Solid Films 518 5047Google Scholar

  • 图 1  台式毛细管聚焦的微束X射线衍射仪(μ-Hawk)结构示意图

    Figure 1.  Structure of the desktop micro-X-ray diffractometer (μ-Hawk) focused by polycapillary optics.

    图 2  μ-Hawk自动化控制流程图

    Figure 2.  Automatic control flow chart of μ-Hawk.

    图 3  μ-Hawk控制程序的主界面与Si (4 0 0)的X射线衍射图

    Figure 3.  Main interface of controlling program of μ-Hawk and the X-ray diffraction pattern of Si (4 0 0).

    图 4  有Ni吸收片和无Ni吸收片两种条件下的X射线散射谱

    Figure 4.  X-ray scattering spectra with and without Ni filter.

    图 5  在接收狭缝宽度为0.1 mm, 样品和探测器之间不同距离条件下测得Si (4 0 0)衍射峰的(a)高斯拟合峰和(b)数据散点图; 在样品和探测器之间距离为70 mm, 不同接收狭缝宽度条件下测得Si (4 0 0)衍射峰的(c)高斯拟合峰和(d)数据散点图

    Figure 5.  (a) Gaussian fitting peak and (b) data scatter diagram of measured Si (4 0 0) diffraction peak when the receiving slit size is 0.1 mm, and the distances between the sample and the detector are varied; (c) gaussian fitting peak and (d) data scatter diagram of measured Si (4 0 0) diffraction peak when the distance between the sample and the detector is 70 mm, receiving slit sizes are varied.

    图 6  人民币5角硬币以及待测点示意图

    Figure 6.  The RMB 5 Jiao coin and the detected point.

    图 7  硬币的微区X射线荧光谱

    Figure 7.  Micro-X-ray fluorescence spectrum of the coin.

    图 8  μ-Hawk和X-pert-pro-MPD两种衍射仪测量硬币的衍射图

    Figure 8.  Diffraction patterns measured by μ-Hawk and X-pert-pro-MPD diffractometer of the coin.

    图 9  直径为140 μm的铜导线以及待测点示意图

    Figure 9.  Copper wire with a diameter of 140 μm and the detected point.

    图 10  直径140 μm铜导线的X射线衍射图

    Figure 10.  Micro-X-ray diffraction pattern of copper wire with a diameter of 140 μm.

    图 11  苹果手机主板上某焊锡接触点以及探测区域示意图

    Figure 11.  Picture of one welding joint on the motherboard of an iPhone and the detected area.

    图 12  焊锡接触点的微区X射线荧光谱

    Figure 12.  Micro-X-ray fluorescence spectrum of the welding joint.

    图 13  焊锡接触点的微区X射线衍射图

    Figure 13.  Micro-X-ray diffraction pattern of the welding joint.

    图 14  焊锡接触点中SnO2 (3 1 2)在1.0 mm × 0.6 mm区域内的物相分布图

    Figure 14.  Phase mapping in 1.0 mm × 0.6 mm area of SnO2 (3 1 2) in the welding joint.

    表 1  测定衍射仪精确度的参考数据与不同角度位置的|Δd/d|

    Table 1.  Reference data for the determination of diffractometer accuracy and|Δd/d| at different angles.

    Reference dataMeasured data|Δd/d|
    PDF2θ/(°)d/nm(h k l)
    SiO2 (JCPDS 52-0784)18.05100.4910(0 0 3)0.0111
    Si (JCPDS 27-1402)69.13000.1358(4 0 0)0.0003
    CuO (JCPDS 48-1548)113.48500.0921(1 1 5)0.2596
    DownLoad: CSV

    表 2  两种衍射仪的实验条件

    Table 2.  Measurement conditions of two diffractometers.

    Itemμ-HawkX-pert-pro-MPD
    Anode materialCuCu
    XRD monochromatorNi filterNi filter
    Focal size/mm0.115 × 0.1151 × 10
    HV/kV3040
    Current/mA0.540
    2θ/(°)10—12010—90
    Step size/(°)0.10.03
    Step time/s1120
    DownLoad: CSV
  • [1]

    Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114Google Scholar

    [2]

    Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng. B 206 69Google Scholar

    [3]

    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16Google Scholar

    [4]

    Wang W Q, Ji L, Li H X, Liu X H, Zhou H D, Chen J M 2019 Chin. Phys. B 28 036802Google Scholar

    [5]

    Biberger J, Füßer H J, Klaus M, Genzel C 2017 Wear 376– 377 1502Google Scholar

    [6]

    Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697Google Scholar

    [7]

    Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143Google Scholar

    [8]

    Shen Y Y, Zhang Y X, Qi T, Qiao Y, Jia Y X, Hei H J, He Z Y, Yu S W 2016 Chin. Phys. Lett. 33 088101

    [9]

    Hampai D, Dabagov S B, Cappuccio G 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 264Google Scholar

    [10]

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Cheng L 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 442 13Google Scholar

    [11]

    Berthold C, Bjeoumikhov A, Brügemann L 2009 Part. Part. Syst. Charact. 26 107Google Scholar

    [12]

    Romano F P, Pappalardo L, Masini N, Pappalardo G, Rizzo F 2011 Microchem. J. 99 449Google Scholar

    [13]

    Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar

    [14]

    段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar

    [15]

    Wrobel P, Czyzycki M, Furman L, Kolasinski K, Lankosz M, Mrenca A, Samek L, Wegrzynek D 2012 Talanta 93 186Google Scholar

    [16]

    Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1493Google Scholar

    [17]

    Décobert J, Guillamet R, Mocuta C, Carbone G, Guerault H 2013 J. Cryst. Growth 370 154Google Scholar

    [18]

    江超华 2014 多晶X射线衍射技术与应用 (北京: 化学工业出版社) 第169页

    Jiang C H 2014 The Technique and Application of Polycrystalline X-ray Diffraction (Beijing: Chemical Industry Press) p169 (in Chinese)

    [19]

    徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar

    Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar

    [20]

    Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar

    [21]

    Baated A, Hamasaki K, Kim S S, Kim K S, Suganuma K 2011 J. Electron. Mater. 40 2278Google Scholar

    [22]

    Zhou W, Mahato D N, Macdonald C A 2010 Thin Solid Films 518 5047Google Scholar

  • [1] Zhao Chang-Zhe, Si Shang-Yu, Zhang Hai-Peng, Xue Lian, Li Zhong-Liang, Xiao Ti-Qiao. Beam splitting characteristics of crystal X-ray Laue diffraction. Acta Physica Sinica, 2022, 71(4): 046101. doi: 10.7498/aps.71.20211674
    [2] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] Beam splitting characteristics of crystal X-ray Laue diffraction. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211674
    [4] Liu Jun, Jiang Qi-Li, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin, Wang Rong. A type of X-ray diffractometer with adaptive X-ray spot sizes. Acta Physica Sinica, 2021, 70(1): 010701. doi: 10.7498/aps.70.20201228
    [5] Mou Huan, Li Bao-Quan, Cao Yang. Transmission-type miniature micro-beam modulated X-ray source based on space application. Acta Physica Sinica, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [6] Yan Fen, Zhang Ji-Chao, Li Ai-Guo, Yang Ke, Wang Hua, Mao Cheng-Wen, Liang Dong-Xu, Yan Shuai, Li Jiong, Yu Xiao-Han. Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta Physica Sinica, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [7] Li Hong-Tao, Luo Yi, Xi Guang-Yi, Wang Lai, Jiang Yang, Zhao Wei, Han Yan-Jun, Hao Zhi-Biao, Sun Chang-Zheng. Thickness measurement of GaN films by X-ray diffraction. Acta Physica Sinica, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [8] A newly micro-X-ray fluorescence spectrometer and applications for non-destructive analysis of archaeological objects. Acta Physica Sinica, 2007, 56(12): 6894-6898. doi: 10.7498/aps.56.6894
    [9] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [10] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [11] Chen Min, Xiao Ti-Qiao, Luo Yu-Yu, Liu Li-Xiang, Wei Xun, Du Guo-Hao, Xu Hong-Jie. Phase-contrast imaging with microfocus x-ray source. Acta Physica Sinica, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [12] Xu Qiang, Wang Jian-Bao, Yuan Jian, Lu Fang, Sun Heng-Hui. . Acta Physica Sinica, 1995, 44(3): 432-438. doi: 10.7498/aps.44.432
    [13] Zhao Zong-Yan, Fan Xiao-Quan, Han Jia-Hua, Zhou Sheng-Ming, Tomoe Fukamachi, Ruchirou Negishi, Masimi Yoshizawa. . Acta Physica Sinica, 1995, 44(5): 734-744. doi: 10.7498/aps.44.734
    [14] ZHANG JIAN-ZHONG, CAO YAN-NI. SIMULATION STUDY OF DIVERGENT BEAM X-RAY DIFFRACTION BY CRYSTALS. Acta Physica Sinica, 1990, 39(1): 124-128. doi: 10.7498/aps.39.124
    [15] HE YAN-CAI, CAO LI QUN. CALCULATION OF THE X-RAY INTENSITY FROM PARTICLES BY MONTE CARLO SIMULATION. Acta Physica Sinica, 1984, 33(2): 241-249. doi: 10.7498/aps.33.241
    [16] SUN ZhANG-DE. SOLVING THE EQUATION OF X-RAY DIFFRACTION BY GREEN'S FUNCTION. Acta Physica Sinica, 1983, 32(8): 982-989. doi: 10.7498/aps.32.982
    [17] Li Fang-hua, Fan Han-jie, Zhang Pei-shan, Wang Yi-hua. THE APPLICATION OF MICRO-AREA X-RAY ENERGY DISPERSIVE ANALYSIS IN INVESTIGATING BARIUM-RARE EARTH FLUOROCARBONATE MINERALS. Acta Physica Sinica, 1983, 32(4): 460-465. doi: 10.7498/aps.32.460
    [18] LING BING-CHANG. PERTURBATIVE SOLUTION OF TAKAGI EQUATION IN X-RAY DIFFRACTION DYNAMIC IN SLIGHTLY DEFORMATION CRYSTAL. Acta Physica Sinica, 1981, 30(11): 1528-1532. doi: 10.7498/aps.30.1528
    [19] XU JI-AN, HU JING-ZHU. X-RAY DIFFRACTION UNDER HIGH PRESSURE. Acta Physica Sinica, 1977, 26(6): 521-525. doi: 10.7498/aps.26.521
    [20] WU TE-CHAN, WANG JEN-HUI. THE THERMAL DIFFUSE X-RAY SCATTERING AND ELASTIC CONSTANTS OF ZINC. Acta Physica Sinica, 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
Metrics
  • Abstract views:  9604
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2019
  • Accepted Date:  13 October 2019
  • Available Online:  27 November 2019
  • Published Online:  01 December 2019

/

返回文章
返回