Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism

Wang Yan-Bo Cui Dan-Yu Zhang Cai-Yi Han Li-Yuan Yang Xu-Dong

Citation:

Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism

Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong
PDF
HTML
Get Citation
  • Perovskite solar cells, as a promising next-generation photovoltaic technology for large-scale application, have demonstrated the advantages of high absorption coefficient, tunable bandgap, considerable photoelectric conversion efficiency and low-cost fabrication. However, the photoelectric conversion process within the device is still not understood clearly. One of the major reasons is that it is difficult to directly observe the space potential inside the device and its effect on the photogenerated charge carriers. The direct measurement and analysis of the space potential inside the device and the clarification of the intrinsic relationship between the space potential and the charge carrier micro-process under illumination and different electric field conditions can reveal the photoelectric conversion mechanism in depth, and thus providing the scientific research basis for the further development. Kelvin probe force microscopy (KPFM), a testing technology that is non-contact, can detect the space potential distribution without any damage to the device, demonstrating the great potential to unveil the working mechanism of perovskite solar cells accurately. Such a characterization method can work under vacuum condition. The KPFM combines Kelvin method of measuring contact potential difference with the scan probe microscopy to characterize internal carrier dynamic behavior with high resolution on a nanometer scale. The study of the spatial potential distribution of semiconductor device plays an important role in understanding the working mechanism of new perovskite solar cells. For example, under an open-circuit condition, the intensity and width of the electric field and space charge region can be obtained from the spatial potential distribution, and the bending direction of the energy band can be judged according to the increase or decrease of the potential. While in a short-circuit case, the generation and transport of charge carriers can be obtained. In this review, we mainly introduce the research progress of the space potential distribution and optoelectronic conversion mechanism in perovskite solar cells. The key mechanism of charge carrier generation, separation, transport and recombination are revealed by using KPFM to directly observe the space potential variations caused by light or electric field. We also prospect the issues and challenges in the future research.
      Corresponding author: Yang Xu-Dong, Yang.xudong@sjtu.edu.cn
    • Funds: Project supported the National Natural Science Foundation of China (Grant Nos. 11574199, 11674219).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [3]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [4]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [5]

    Lin K, Xing J, Quan L N, García de Arquer F P, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [6]

    Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G 2017 Nature 550 87Google Scholar

    [7]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [8]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [9]

    Yang M J, Zhang T Y, Schulz P, Li Z, Li G, Kim D H, Guo N J, Berry J J, Zhu K, Zhao Y X 2016 Nat. Commun. 7 12305

    [10]

    Ye F, Chen H, Xie F X, Tang W T, Yin M S, He J J, Bi E B, Wang Y B, Yang X D, Han L Y 2016 Energy Environ. Sci. 9 2295Google Scholar

    [11]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar

    [12]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L 2015 Science 350 944Google Scholar

    [13]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963Google Scholar

    [14]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M 2017 Science 358 768Google Scholar

    [15]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [16]

    Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [17]

    Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [18]

    Wu T, Wang Y, Li X, Wu Y, Meng X, Cui D, Yang X, Han L 2019 Adv. Energy Mater. 9 1803766

    [19]

    Jiang C S, Yang M J, Zhou Y Y, To B, Nanayakkara S U, Luther J M, Zhou W L, Berry J J, van de Lagemaat J, Padture N P, Zhu K, Al-Jassim M M 2015 Nat. Commun. 6 8397Google Scholar

    [20]

    Kang Z, Si H, Shi M, Xu C, Fan W, Ma S, Kausar A, Liao Q, Zhang Z, Zhang Y 2019 Sci. China: Mater. 62 776

    [21]

    Heiland G 1975 Berichte der Bunsengesellschaft für Physikalische Chemie 79 641

    [22]

    Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921Google Scholar

    [23]

    Bergmann V W, Weber S A L, Javier Ramos F, Nazeeruddin M K, Grätzel M, Li D, Domanski A L, Lieberwirth I, Ahmad S, Berger R 2014 Nat. Commun. 5 5001Google Scholar

    [24]

    Dymshits A, Henning A, Segev G, Rosenwaks Y, Etgar L 2015 Sci. Rep. 5 8704Google Scholar

    [25]

    Cai M L, Ishida N, Li X, Yang X D, Noda T, Wu Y Z, Xie F X, Naito H, Fujita D, Han L Y 2018 Joule 2 296Google Scholar

    [26]

    Chang J, Xiao J, Lin Z, Zhu H, Xu Q H, Zeng K, Hao Y, Ouyang J 2016 J. Mater. Chem. A 4 17464Google Scholar

    [27]

    Do Kim H, Ohkita H, Benten H, Ito S 2016 Adv. Mater. 28 917Google Scholar

    [28]

    Li M, Yan X, Kang Z, Liao X, Li Y, Zheng X, Lin P, Meng J, Zhang Y 2017 ACS Appl. Mater. Interfaces 9 7224Google Scholar

    [29]

    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, de Quilettes D W, Sadhanala A, Li W Z, Wang L D, Ginger D S, Friend R H, Snaith H J 2015 Nat. Commun. 6 10030

    [30]

    Li W, Rothmann M U, Liu A, Wang Z Y, Zhang Y P, Pascoe A R, Lu J F, Jiang L C, Chen Y, Huang F Z, Peng Y, Bao Q L, Etheridge J, Bach U, Cheng Y B 2017 Adv. Energy Mater. 7 1700946

    [31]

    Yun J S, Kim J, Young T, Patterson R J, Kim D, Seidel J, Lim S, Green M A, Huang S J, Ho-Baillie A 2018 Adv. Funct. Mater. 28 1705363

    [32]

    Wang C, Xiao C, Yu Y, Zhao D, Awni R A, Grice C R, Ghimire K, Constantinou I, Liao W, Cimaroli A J, Liu P, Chen J, Podraza N J, Jiang C S, Al-Jassim M M, Zhao X, Yan Y 2017 Adv. Energy Mater. 7 1700414Google Scholar

    [33]

    Xiao C X, Wang C L, Ke W J, Gorman B P, Ye J C, Jiang C S, Yan Y F, Al-Jassim M M 2017 ACS Appl. Mater. Interfaces 9 38373Google Scholar

    [34]

    Lan F, Jiang M, Tao Q, Li G 2018 IEEE J. Photovolt. 8 125Google Scholar

  • 图 1  开尔文探针力显微镜技术原理示意图[19]

    Figure 1.  Illustration of Kelvin probe force microscopy[19].

    图 2  (a)通过开尔文探针力显微镜技术探测正式介孔结构器件的空间电势; (b)电池空间电势光致变化[23]

    Figure 2.  (a) Potential of mesoporous perovskite solar cells using Kelvin probe force microscopy (FTO, fluorine-doped tin oxide; HTM, hole-transport material); (b) space potential changes of perovskite solar cells under illumination (CPD, contact potential difference)[23].

    图 3  (a)正式平面结构, 钙钛矿组分碘化铅过量和碘甲胺过量时对应的电池空间电势变化; (b)正式介孔结构、正式平面结构电池性能和理想因子与钙钛矿组分之间的关系[25]

    Figure 3.  (a) Kelvin probe force microscopy characterizations of perovskite solar cells for the mesoporous structures using MAI- and PbI2-Rich precursors; (b) photovoltaic performance of mesoporous and planar perovskite solar cells and ideality factor on PbI2/CH3NH3I(MAI) mole ratio[25].

    图 4  (a)正式平面结构钙钛矿电池在未加偏压下的空间电势分布; (b)正式平面结构在不同电压下的空间电势及电场分布情况; (c)正式介孔结构在不同电压下的空间电势及电场分布情况[19]

    Figure 4.  (a) Potential distribution of mesoporous perovskite solar cells under Vb = 0 (TCO, transparent conducting oxide; PS, perovskite); (b) electrical potential and field profiling results on the planar device under different biases; (c) electrical potential and field profiling results on the optimized mesoporous device under different biases[19].

    图 5  (a)二氧化锡正式平面结构钙钛矿电池在不同电压下的空间电势分布; (b) 100, (c) 150, (d) 200 ℃退火后处理的二氧化锡作为电荷传输材料的器件不同电压下的空间电势及电场分布情况[32]

    Figure 5.  (a) Potential difference of planar device based on SnO2 electron transfer layer, under different biases (fluorine-dopled SnO2, FTO; electron selective layer, ESL; hole selective layer, HSL); (b) 100, (c) 150, (d) 200 ℃ electrical potential and field profiling results of the device based on low-temperature thermal annealing of SnO2 electron transfer layer[32].

    图 6  (a)正式钙钛矿电池在不同电压下的空间电势分布; (b)反式钙钛矿电池在不同电压下的空间电势分布[34]

    Figure 6.  (a) Potential distribution of regular perovskite solar cells under different biases; (b) potential distribution of inverted perovskite solar cells under different biases[34].

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [3]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [4]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [5]

    Lin K, Xing J, Quan L N, García de Arquer F P, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [6]

    Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G 2017 Nature 550 87Google Scholar

    [7]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [8]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [9]

    Yang M J, Zhang T Y, Schulz P, Li Z, Li G, Kim D H, Guo N J, Berry J J, Zhu K, Zhao Y X 2016 Nat. Commun. 7 12305

    [10]

    Ye F, Chen H, Xie F X, Tang W T, Yin M S, He J J, Bi E B, Wang Y B, Yang X D, Han L Y 2016 Energy Environ. Sci. 9 2295Google Scholar

    [11]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar

    [12]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L 2015 Science 350 944Google Scholar

    [13]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963Google Scholar

    [14]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Gratzel M 2017 Science 358 768Google Scholar

    [15]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [16]

    Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [17]

    Tan H, Jain A, Voznyy O, Lan X, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan L N, Zhao Y, Lu Z H, Yang Z, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [18]

    Wu T, Wang Y, Li X, Wu Y, Meng X, Cui D, Yang X, Han L 2019 Adv. Energy Mater. 9 1803766

    [19]

    Jiang C S, Yang M J, Zhou Y Y, To B, Nanayakkara S U, Luther J M, Zhou W L, Berry J J, van de Lagemaat J, Padture N P, Zhu K, Al-Jassim M M 2015 Nat. Commun. 6 8397Google Scholar

    [20]

    Kang Z, Si H, Shi M, Xu C, Fan W, Ma S, Kausar A, Liao Q, Zhang Z, Zhang Y 2019 Sci. China: Mater. 62 776

    [21]

    Heiland G 1975 Berichte der Bunsengesellschaft für Physikalische Chemie 79 641

    [22]

    Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921Google Scholar

    [23]

    Bergmann V W, Weber S A L, Javier Ramos F, Nazeeruddin M K, Grätzel M, Li D, Domanski A L, Lieberwirth I, Ahmad S, Berger R 2014 Nat. Commun. 5 5001Google Scholar

    [24]

    Dymshits A, Henning A, Segev G, Rosenwaks Y, Etgar L 2015 Sci. Rep. 5 8704Google Scholar

    [25]

    Cai M L, Ishida N, Li X, Yang X D, Noda T, Wu Y Z, Xie F X, Naito H, Fujita D, Han L Y 2018 Joule 2 296Google Scholar

    [26]

    Chang J, Xiao J, Lin Z, Zhu H, Xu Q H, Zeng K, Hao Y, Ouyang J 2016 J. Mater. Chem. A 4 17464Google Scholar

    [27]

    Do Kim H, Ohkita H, Benten H, Ito S 2016 Adv. Mater. 28 917Google Scholar

    [28]

    Li M, Yan X, Kang Z, Liao X, Li Y, Zheng X, Lin P, Meng J, Zhang Y 2017 ACS Appl. Mater. Interfaces 9 7224Google Scholar

    [29]

    Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, de Quilettes D W, Sadhanala A, Li W Z, Wang L D, Ginger D S, Friend R H, Snaith H J 2015 Nat. Commun. 6 10030

    [30]

    Li W, Rothmann M U, Liu A, Wang Z Y, Zhang Y P, Pascoe A R, Lu J F, Jiang L C, Chen Y, Huang F Z, Peng Y, Bao Q L, Etheridge J, Bach U, Cheng Y B 2017 Adv. Energy Mater. 7 1700946

    [31]

    Yun J S, Kim J, Young T, Patterson R J, Kim D, Seidel J, Lim S, Green M A, Huang S J, Ho-Baillie A 2018 Adv. Funct. Mater. 28 1705363

    [32]

    Wang C, Xiao C, Yu Y, Zhao D, Awni R A, Grice C R, Ghimire K, Constantinou I, Liao W, Cimaroli A J, Liu P, Chen J, Podraza N J, Jiang C S, Al-Jassim M M, Zhao X, Yan Y 2017 Adv. Energy Mater. 7 1700414Google Scholar

    [33]

    Xiao C X, Wang C L, Ke W J, Gorman B P, Ye J C, Jiang C S, Yan Y F, Al-Jassim M M 2017 ACS Appl. Mater. Interfaces 9 38373Google Scholar

    [34]

    Lan F, Jiang M, Tao Q, Li G 2018 IEEE J. Photovolt. 8 125Google Scholar

  • [1] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] Wen Heng-Di, Liu Yue, Zhen Liang, Li Yang, Xu Cheng-Yan. Charge transmission of MoS2/MoTe2 vertical heterojunction and its modulation. Acta Physica Sinica, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [5] Feng Jie, Guo Qiang, Shu Peng-Li, Wen Yang, Wen Huan-Fei, Ma Zong-Min, Li Yan-Jun, Liu Jun, Igor Vladimirovich Yaminsky. Measurement of distribution of charge adsorbed on Aux/Si(111)-7×7 surface on an atomic scale in ultra-high vacuum. Acta Physica Sinica, 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [6] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [9] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [11] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [14] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [17] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
Metrics
  • Abstract views:  11625
  • PDF Downloads:  408
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2019
  • Accepted Date:  29 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回