Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rashba effect in perovskites and its influences on carrier recombination

Wei Ying-Qiang Xu Lei Peng Qi-Ming Wang Jian-Pu

Citation:

Rashba effect in perovskites and its influences on carrier recombination

Wei Ying-Qiang, Xu Lei, Peng Qi-Ming, Wang Jian-Pu
PDF
HTML
Get Citation
  • When there is a strong spin-orbit coupling in some direct semiconductor with an inversion-asymmetric structure, the Rashba effect will exist, splitting the spin-degenerated bands into two sub-bands with opposite spin states. These two sub-bands will deviate from the symmetry center of the Brillouin zone, making the semiconductor an indirect band gap semiconductor. Metal halide perovskites exhibit strong spin-orbit coupling and possess an inversion-asymmetric crystal structure, showing great potential in Rashba effect research. In this review, we systematically review the Rashba effects in perovskites, including the theoretical and experimental studies for demonstrating the Rashba effect in perovskites, the influence of Rashba effect on the carrier recombination, and the current debates concerning the Rashba effect in perovskites. Then, several problems that need to be solved urgently are proposed,they being 1) whether there exists the Rashba effect in the perovskite, 2) whether the Rashba effect can exert a significant influence on carrier recombination, and 3) what the relationship between the Rashba effect and the perovskite stucture is. The prospects are also given for the future research including the study of the Rashba effect in perovskites by various spectral methods and the applications of the Rashba effect in optical-electronic-magnetic devices.
      Corresponding author: Peng Qi-Ming, iamqmpeng@njtech.edu.cn ; Wang Jian-Pu, iamjpwang@njtech.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB932200), the Joint Research Program between China and European Union (Grant No. 2016YFE0112000), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91733302), the National Science Fund for Distinguished Young Scholars,China (Grant No. 61725502), the National Natural Science Foundation of China (Grant No. 11804156), and the Nanjing Tech Start-up Grant, China (Grant No. 38274017104).
    [1]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [2]

    Sutherland B R, Sargent E H 2016 Nat. Photon. 10 295Google Scholar

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [4]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [5]

    Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 1804771

    [6]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [7]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [8]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [9]

    NREL 2019 Best Research-Cell Efficiencies 2019 https://www.nrel.gov/pv/cell-efficiency.html [2019-05-05]

    [10]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar

    [11]

    Bi Y, Hutter E M, Fang Y, Dong Q, Huang J, Savenije T J 2016 J. Phys. Chem. Lett. 7 923Google Scholar

    [12]

    Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386Google Scholar

    [13]

    Azarhoosh P, McKechnie S, Frost J M, Walsh A, van Schilfgaarde M 2016 APL Mater. 4 091501Google Scholar

    [14]

    Ambrosio F, Wiktor J, de Angelis F, Pasquarello A 2018 Energy Environ. Sci. 11 101Google Scholar

    [15]

    Chen T, Chen W L, Foley B J, Lee J, Ruff J P C, Ko J Y P, Brown C M, Harriger L W, Zhang D, Park C, Yoon M, Chang Y M, Choi J J, Lee S H 2017 PNAS 114 7519Google Scholar

    [16]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584Google Scholar

    [17]

    Zhang C, Sun D, Vardeny Z V 2017 Adv. Electron. Mater. 3 1600426Google Scholar

    [18]

    Zhang Z, Long R, Tokina M V, Prezhdo O V 2017 J. Am. Chem. Soc. 139 17327Google Scholar

    [19]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2014 J. Am. Chem. Soc. 136 11610Google Scholar

    [20]

    Stranks S D, Burlakov V M, Leijtens T, Ball J M, Goriely A, Snaith H J 2014 Phys. Rev. Appl. 2 034007Google Scholar

    [21]

    Ma J, Wang L W 2015 Nano Lett. 15 248Google Scholar

    [22]

    Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430Google Scholar

    [23]

    Fang Y, Wei H, Dong Q, Huang J 2017 Nat. Commun. 8 14417Google Scholar

    [24]

    Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794Google Scholar

    [25]

    Etienne T, Mosconi E, De Angelis F 2016 J. Phys. Chem. Lett. 7 1638Google Scholar

    [26]

    Leppert L, Reyes-Lillo S E, Neaton J B 2016 J. Phys. Chem. Lett. 7 3683Google Scholar

    [27]

    Pedesseau L, Kepenekian M, Robles R, Sapori D, Katan C, Even J 2016 Proc. of SPIE 9742 97421BGoogle Scholar

    [28]

    Yu Z G 2016 J. Phys. Chem. Lett. 7 3078Google Scholar

    [29]

    Isarov M, Tan L Z, Bodnarchuk M I, Kovalenko M V, Rappe A M, Lifshitz E 2017 Nano Lett. 17 5020Google Scholar

    [30]

    Kepenekian M, Even J 2017 J. Phys. Chem. Lett. 8 3362Google Scholar

    [31]

    Yu Z G 2017 Phys. Chem. Chem. Phys. 19 14907Google Scholar

    [32]

    Che X, Traore B, Katan C, Kepenekian M, Even J 2018 Phys. Chem. Chem. Phys. 20 9638Google Scholar

    [33]

    Li Z, Kolodziej C, Zhang T, McCleese C, Kovalsky A, Zhao Y, Lambrecht W R L, Burda C 2018 J. Am. Chem. Soc. 140 11811Google Scholar

    [34]

    Stranks S D, Plochocka P 2018 Nat. Mater. 17 381Google Scholar

    [35]

    Myung C W, Javaid S, Kim K S, Lee G 2018 ACS Energy Lett. 3 1294Google Scholar

    [36]

    Niesner D, Hauck M, Shrestha S, Levchuk I, Matt G J, Osvet A, Batentschuk M, Brabec C, Weber H B, Fauster T 2018 PNAS 115 9509Google Scholar

    [37]

    Stroppa A, Di Sante D, Barone P, Bokdam M, Kresse G, Franchini C, Whangbo M H, Picozzi S 2014 Nat. Commun. 5 5900Google Scholar

    [38]

    Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C, Fauster T 2016 Phys. Rev. Lett. 117 126401Google Scholar

    [39]

    Mosconi E, Etienne T, de Angelis F 2017 T. Phys. Chem. Lett. 8 2247Google Scholar

    [40]

    Davies C L, Filip M R, Patel J B, Crothers T W, Verdi C, Wright A D, Milot R L, Giustino F, Johnston M B, Herz L M 2018 Nat. Commun. 9 293Google Scholar

    [41]

    Sarritzu V, Sestu N, Marongiu D, Chang X, Wang Q, Masi S, Colella S, Rizzo A, Gocalinska A, Pelucchi E, Mercuri M L, Quochi F, Saba M, Mura A, Bongiovanni G 2018 Adv. Opt. Mater. 6 1701254Google Scholar

    [42]

    Frohna K, Deshpande T, Harter J, Peng W, Barker B A, Neaton J B, Louie S G, Bakr O M, Hsieh D, Bernardi M 2018 Nat. Commun. 9 1829Google Scholar

    [43]

    Zhang X, Shen J X, Wang W, Van de Walle C G 2018 ACS Energy Lett. 3 2329Google Scholar

    [44]

    Zhang X, Shen J X, Van de Walle C G 2018 J. Phys. Chem. Lett. 9 2903Google Scholar

    [45]

    Rashba E I, Sheka V I 1959 Fiz. Tverd. Tela: Collected Papers 2 162

    [46]

    Rashba E I. 1959 Sov. Phys.-Solid State 1 368

    [47]

    Zhai Y, Baniya S, Zhang C, Li J, Haney P, Sheng C X, Ehrenfreund E, Vardeny Z V 2017 Sci. Adv. 3 e1700704Google Scholar

    [48]

    Dresselhaus G, Kip A F, Kittel C 1954 Phys. Rev. 95 568Google Scholar

    [49]

    Zhang X, Liu Q, Luo J W, Freeman A J, Zunger A 2014 Nat. Phys. 10 387Google Scholar

    [50]

    Ganichev S D, Golub L E 2014 Phys. Status Solidi B 251 1801Google Scholar

    [51]

    Giglberger S, Golub L E, Bel'kov V V, Danilov S N, Schuh D, Gerl C, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W, Ganichev S D 2007 Phys. Rev. B 75 035327

    [52]

    Frantzeskakis E, Pons S, Mirhosseini H, Henk J, Ast C R, Grioni M 2008 Phys. Rev. Lett. 101 196805Google Scholar

    [53]

    King P D, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks E D, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802Google Scholar

    [54]

    Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y 2011 Nat. Mater. 10 521Google Scholar

    [55]

    Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92 256601Google Scholar

    [56]

    Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557Google Scholar

    [57]

    Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 PNAS 111 6900Google Scholar

    [58]

    Etienne T, Mosconi E, de Angelis F 2018 J. Phys. Chem. C 122 124Google Scholar

    [59]

    Hu S, Gao H, Qi Y, Tao Y, Li Y, Reimers J R, Bokdam M, Franchini C, Sante D D, Stroppa A, Ren W 2017 J. Phys. Chem. C 121 23045Google Scholar

    [60]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Graetzel M, de Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [61]

    Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi (RRL) 8 31Google Scholar

    [62]

    Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026Google Scholar

    [63]

    Marronnier A, Roma G, Carignano M A, Bonnassieux Y, Katan C, Even J, Mosconi E, de Angelis F 2019 J. Phys. Chem. C 123 291Google Scholar

    [64]

    McKechnie S, Frost J M, Pashov D, Azarhoosh P, Walsh A, van Schilfgaarde M 2018 Phys. Rev. B 98 085108Google Scholar

    [65]

    Beecher A N, Semonin O E, Skelton J M, Frost J M, Terban M W, Zhai H, Alatas A, Owen J S, Walsh A, Billinge S J L 2016 ACS Energy Lett. 1 880Google Scholar

    [66]

    Hutter E M, Gélvez-Rueda M C, Osherov A, Bulović V, Grozema F C, Stranks S D, Savenije T J 2017 Nat. Mater. 16 115Google Scholar

    [67]

    Eldridge P S, Leyland W J H, Lagoudakis P G, Harley R T, Phillips R T, Winkler R, Henini M, Taylor D 2010 Phys. Rev. B 82 045317Google Scholar

    [68]

    Wang T, Daiber B, Frost J M, Mann S A, Garnett E C, Walsh A, Ehrler B 2017 Energy Environ. Sci. 10 509Google Scholar

    [69]

    Wu B, Nguyen H T, Ku Z, Han G, Giovanni D, Mathews N, Fan H J, Sum T C 2016 Adv. Energy Mater. 6 1600551Google Scholar

    [70]

    Priest A N, Nicholas R J, Cheng H H, Van der Burgt M, Harris J J, Foxon C T 1998 Physica B 249–251 562

    [71]

    Choi Y J, Debbichi L, Lee D K, Park N G, Kim H, Kim D 2019 J. Phys. Chem. Lett. 10 2135Google Scholar

    [72]

    Chen X, Lu H, Li Z, Zhai Y, Ndione P F, Berry J J, Zhu K, Yang Y, Beard M C 2018 ACS Energy Lett. 3 2273Google Scholar

    [73]

    Yin J, Maity P, Xu L, El-Zohry A M, Li H, Bakr O M, Brédas J L, Mohammed O F 2018 Chem. Mater. 30 8538Google Scholar

    [74]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999Google Scholar

    [75]

    König U, Weinberger P, Redinger J, Erschbaumer H, Freeman A J 1989 Phys. Rev. B 39 7492Google Scholar

    [76]

    Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, de Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A, Ernstorfer R 2016 Phys. Rev. Lett. 117 277201Google Scholar

    [77]

    Bel’kov V V, Ganichev S D, Ivchenko E L, Tarasenko S A, Weber W, Giglberger S, Olteanu M, Tranitz H P, Danilov S N, Schneider P, Wegscheider W, Weiss D, Prettl W 2005 J. Phys.: Conden. Matter 17 3405Google Scholar

    [78]

    Jusserand B, Richards D, Allan G, Priester C, Etienne B 1995 Phys. Rev. B 51 4707Google Scholar

    [79]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [80]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665Google Scholar

  • 图 1  金属卤化物钙钛矿的晶胞结构[2]

    Figure 1.  Crystal structure of the metal halide perovskite [2].

    图 2  钙钛矿中Rashba效应对载流子复合的影响示意图[24]

    Figure 2.  Schematic diagram of the impact of Rashba effect on the carriers recombination in perovskite [24].

    图 3  Rashba效应示意图[47]

    Figure 3.  Schematic diagram of the Rashba effect [47].

    图 4  (a)具有不同自旋极化的Rashba分裂子带偏离了k空间的Γ[61]; (b)通过调控材料的铁电性改变Rashba分裂子带的自旋螺旋性[57]; (c)通过控制外电场调控自旋分裂子带中的自旋构造[37]

    Figure 4.  (a) Rashba-splitting sub-bands with different spin polarization deviate from the Γ point in the k space [61]; (b) changing the spin helicity of the Rashba-spliting sub-bands by tuning the ferroelectricity of the material[57]; (c) tuning the spin texture of the spin-splitting sub-bands by controlling the external electric field [37].

    图 5  (a)密度泛函计算表明晶格的扭曲致使钙钛矿成为间接带隙半导体[62]; (b)分子动力学分析指出钙钛矿中的Rashba效应随时间变化[58]; (c)基于分子动力学和冻结声子分析法的研究表明钙钛矿中动态的Rashba效应源自非简谐结构波动[63]; (d) ab initio计算分子动力学、密度泛函理论以及准粒子GW理论的综合分析结果表明钙钛矿中动态Rashba效应来源于材料中热无序导致的势能波动[64]

    Figure 5.  (a) Density functional calculations show that perovskite becomes an indirect semiconductor due to the lattice distortion[62]; (b) molecular dynamics analysis shows that the Rashba effect in perovskite varies with time[58]; (c) molecular dynamics and frozen phonon analysis show that the dynamic Rashba effect in perovskite originates from the fluctuation of anharmonic structure[63]; (d) the combination analysis of ab initio molecular dynamics, density functional theory and quasiparticle GW theory shows that the dynamic Rashba effect in perovskite originates from the potential energy fluctuation caused by thermal disorder in perovskite [64].

    图 6  (a)高温下钙钛矿中的局域对称性破缺; (b)甲胺的取向与非谐波模式强烈耦合[65]

    Figure 6.  (a) Local symmetry breaking in perovskite at high temperature; (b) the orientation of methylammonium is strongly coupled to the non-harmonic mode [65].

    图 7  利用圆偏光生电流效应研究钙钛矿中的Rashba效应[36]

    Figure 7.  Rashba effects in perovskite were studied by measuring the circular photogalvanic effects [36].

    图 8  利用时间分辨微波传导测试研究钙钛矿中的Rashba效应[66]

    Figure 8.  Studying the Rashba effect in perovskite through time-resolved microwave conductance measurements [66].

    图 9  (a), (b)利用磁光效应研究钙钛矿中的Rashba效应[29]; (c)通过测试高压下的钙钛矿光电性质研究钙钛矿中的Rashba效应[68]; (d)利用电诱导吸收谱和瞬态光谱测试法研究钙钛矿中的Rashba效应[47]

    Figure 9.  (a), (b) Studying the Rashba effect in perovskite by measuring the magneto-optical effects [29]; (c) studying the Rashba effect in perovskite by measuring the optoelectronic properties of perovskite at high pressure[68]; (d) studying the Rashba effect in perovskite by measuring the electroabsorption spectra and transient spectroscopy [47].

    图 10  利用角分辨光电子能谱研究钙钛矿中的Rashba效应[38]

    Figure 10.  Studying the Rashba effect in perovskite by angle-resolved photoelectron spectroscopy measurements [38].

    图 11  基于第一性原理计算和Rashba自旋-轨道耦合模型的分析研究钙钛矿中Rashba效应对载流子复合的影响[24]

    Figure 11.  Studying the influence of Rashba effect on carrier recombination based on the first principle calculations and the Rashba spin-orbit coupling model analyses [24].

    图 12  利用准粒子自洽场GW法研究不同激发密度和不同温度下Rashba效应对钙钛矿中光生载流子辐射复合速率的影响[13]

    Figure 12.  Studying the influence of the Rashba effect on the radiative recombination rates of photo-generated carriers in perovskite under different excitation densities and temperatures by quasiparticle self-consistent field GW method [13].

    图 13  (a), (b)基于1PE和2PE的瞬态光谱测试研究Rashba效应对钙钛矿表面和内部载流子复合速率的影响[33]; (c)基于瞬态PL研究不同晶粒大小的钙钛矿中Rashba效应对载流子复合的影响[71]

    Figure 13.  (a), (b) Studying the influences of Rashba effect on the carrier recombination rates on the surface and interior of perovskite by transient spectroscopy measurements based on single-photon (1PE) and two-photon (2PE) excitations [33]; (c) studying the impacts of Rashba effect on the carrier recombination in perovskite with different grain size based on transient PL investigation [71].

    图 14  (a)利用瞬态反射谱研究不同n值的二维钙钛矿中Rashba效应对载流子寿命的影响[72]; (b)利用圆偏振时间分辨光谱研究Rashba效应对钙钛矿中载流子自旋寿命的影响[72]

    Figure 14.  (a) Studying the influences of Rashba effect on carrier lifetime in two-dimensional perovskite with different n values by using the transient reflection spectroscopy[72]; (b) studying the influences of Rashba effect on spin lifetime of the carriers in the perovskites by circularly polarized time-resolved spectroscopy [72].

    图 15  基于密度泛函理论和时间分辨激光谱法研究不同n值的二维钙钛矿中的Rashba效应对载流子寿命的影响[73]

    Figure 15.  Studying the influences of Rashba effect on carrier lifetime in two-dimensional perovskite with different n values through density functional theory calculations and time-resolved spectroscopy measurements [73].

    图 16  温度依赖的光谱研究表明钙钛矿是直接带隙半导体[40]

    Figure 16.  Temperature-dependent spectroscopy measurements indicate that the perovskite is a direct bandgap semiconductor [40].

    图 17  通过吸收-PL谱的对比研究(a)和温度依赖的瞬态PL测试(b)证明钙钛矿是直接带隙半导体[41]

    Figure 17.  Absorption-PL spectra study (a) and temperature-dependent transient PL measurements (b) show that the perovskite is a direct bandgap semiconductor [41].

    图 18  SHG-RA测量(a)和第一性原理计算(b)的结果表明钙钛矿结构具有中心反演对称性[42]

    Figure 18.  SHG-RA measurements (a) and first principle calculations (b) show that the structure of perovskite is inversion-symmetric [42]

    图 19  (a)第一性原理计算结果表明虽然钙钛矿中存在Rashba效应, 但载流子复合并不是自旋禁阻的[44]; (b) Rashba效应引起的动量不匹配对载流子复合速率的影响十分微弱[43]

    Figure 19.  Results of first-principles calculations show that the Rashba effect in perovskite does not lead to the spin forbidden of the carrier recombination [44]; (b) the influence of momentum mismatch caused by the Rashba effect on the carriers recombination is very weak [43].

    图 20  (a)利用Rashba效应产生自旋流; (b)利用Rashba效应构造自旋FET[30]

    Figure 20.  (a) Generation of spin current by using the Rashba effect; (b) the spin-FET based on the Rashba effect [30].

  • [1]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [2]

    Sutherland B R, Sargent E H 2016 Nat. Photon. 10 295Google Scholar

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [4]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [5]

    Yang R, Li R, Cao Y, Wei Y, Miao Y, Tan W L, Jiao X, Chen H, Zhang L, Chen Q, Zhang H, Zou W, Wang Y, Yang M, Yi C, Wang N, Gao F, McNeill C R, Qin T, Wang J, Huang W 2018 Adv. Mater. 30 1804771

    [6]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [7]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [8]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [9]

    NREL 2019 Best Research-Cell Efficiencies 2019 https://www.nrel.gov/pv/cell-efficiency.html [2019-05-05]

    [10]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar

    [11]

    Bi Y, Hutter E M, Fang Y, Dong Q, Huang J, Savenije T J 2016 J. Phys. Chem. Lett. 7 923Google Scholar

    [12]

    Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386Google Scholar

    [13]

    Azarhoosh P, McKechnie S, Frost J M, Walsh A, van Schilfgaarde M 2016 APL Mater. 4 091501Google Scholar

    [14]

    Ambrosio F, Wiktor J, de Angelis F, Pasquarello A 2018 Energy Environ. Sci. 11 101Google Scholar

    [15]

    Chen T, Chen W L, Foley B J, Lee J, Ruff J P C, Ko J Y P, Brown C M, Harriger L W, Zhang D, Park C, Yoon M, Chang Y M, Choi J J, Lee S H 2017 PNAS 114 7519Google Scholar

    [16]

    Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M, Walsh A 2014 Nano Lett. 14 2584Google Scholar

    [17]

    Zhang C, Sun D, Vardeny Z V 2017 Adv. Electron. Mater. 3 1600426Google Scholar

    [18]

    Zhang Z, Long R, Tokina M V, Prezhdo O V 2017 J. Am. Chem. Soc. 139 17327Google Scholar

    [19]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2014 J. Am. Chem. Soc. 136 11610Google Scholar

    [20]

    Stranks S D, Burlakov V M, Leijtens T, Ball J M, Goriely A, Snaith H J 2014 Phys. Rev. Appl. 2 034007Google Scholar

    [21]

    Ma J, Wang L W 2015 Nano Lett. 15 248Google Scholar

    [22]

    Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430Google Scholar

    [23]

    Fang Y, Wei H, Dong Q, Huang J 2017 Nat. Commun. 8 14417Google Scholar

    [24]

    Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794Google Scholar

    [25]

    Etienne T, Mosconi E, De Angelis F 2016 J. Phys. Chem. Lett. 7 1638Google Scholar

    [26]

    Leppert L, Reyes-Lillo S E, Neaton J B 2016 J. Phys. Chem. Lett. 7 3683Google Scholar

    [27]

    Pedesseau L, Kepenekian M, Robles R, Sapori D, Katan C, Even J 2016 Proc. of SPIE 9742 97421BGoogle Scholar

    [28]

    Yu Z G 2016 J. Phys. Chem. Lett. 7 3078Google Scholar

    [29]

    Isarov M, Tan L Z, Bodnarchuk M I, Kovalenko M V, Rappe A M, Lifshitz E 2017 Nano Lett. 17 5020Google Scholar

    [30]

    Kepenekian M, Even J 2017 J. Phys. Chem. Lett. 8 3362Google Scholar

    [31]

    Yu Z G 2017 Phys. Chem. Chem. Phys. 19 14907Google Scholar

    [32]

    Che X, Traore B, Katan C, Kepenekian M, Even J 2018 Phys. Chem. Chem. Phys. 20 9638Google Scholar

    [33]

    Li Z, Kolodziej C, Zhang T, McCleese C, Kovalsky A, Zhao Y, Lambrecht W R L, Burda C 2018 J. Am. Chem. Soc. 140 11811Google Scholar

    [34]

    Stranks S D, Plochocka P 2018 Nat. Mater. 17 381Google Scholar

    [35]

    Myung C W, Javaid S, Kim K S, Lee G 2018 ACS Energy Lett. 3 1294Google Scholar

    [36]

    Niesner D, Hauck M, Shrestha S, Levchuk I, Matt G J, Osvet A, Batentschuk M, Brabec C, Weber H B, Fauster T 2018 PNAS 115 9509Google Scholar

    [37]

    Stroppa A, Di Sante D, Barone P, Bokdam M, Kresse G, Franchini C, Whangbo M H, Picozzi S 2014 Nat. Commun. 5 5900Google Scholar

    [38]

    Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C, Fauster T 2016 Phys. Rev. Lett. 117 126401Google Scholar

    [39]

    Mosconi E, Etienne T, de Angelis F 2017 T. Phys. Chem. Lett. 8 2247Google Scholar

    [40]

    Davies C L, Filip M R, Patel J B, Crothers T W, Verdi C, Wright A D, Milot R L, Giustino F, Johnston M B, Herz L M 2018 Nat. Commun. 9 293Google Scholar

    [41]

    Sarritzu V, Sestu N, Marongiu D, Chang X, Wang Q, Masi S, Colella S, Rizzo A, Gocalinska A, Pelucchi E, Mercuri M L, Quochi F, Saba M, Mura A, Bongiovanni G 2018 Adv. Opt. Mater. 6 1701254Google Scholar

    [42]

    Frohna K, Deshpande T, Harter J, Peng W, Barker B A, Neaton J B, Louie S G, Bakr O M, Hsieh D, Bernardi M 2018 Nat. Commun. 9 1829Google Scholar

    [43]

    Zhang X, Shen J X, Wang W, Van de Walle C G 2018 ACS Energy Lett. 3 2329Google Scholar

    [44]

    Zhang X, Shen J X, Van de Walle C G 2018 J. Phys. Chem. Lett. 9 2903Google Scholar

    [45]

    Rashba E I, Sheka V I 1959 Fiz. Tverd. Tela: Collected Papers 2 162

    [46]

    Rashba E I. 1959 Sov. Phys.-Solid State 1 368

    [47]

    Zhai Y, Baniya S, Zhang C, Li J, Haney P, Sheng C X, Ehrenfreund E, Vardeny Z V 2017 Sci. Adv. 3 e1700704Google Scholar

    [48]

    Dresselhaus G, Kip A F, Kittel C 1954 Phys. Rev. 95 568Google Scholar

    [49]

    Zhang X, Liu Q, Luo J W, Freeman A J, Zunger A 2014 Nat. Phys. 10 387Google Scholar

    [50]

    Ganichev S D, Golub L E 2014 Phys. Status Solidi B 251 1801Google Scholar

    [51]

    Giglberger S, Golub L E, Bel'kov V V, Danilov S N, Schuh D, Gerl C, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W, Ganichev S D 2007 Phys. Rev. B 75 035327

    [52]

    Frantzeskakis E, Pons S, Mirhosseini H, Henk J, Ast C R, Grioni M 2008 Phys. Rev. Lett. 101 196805Google Scholar

    [53]

    King P D, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks E D, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802Google Scholar

    [54]

    Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y 2011 Nat. Mater. 10 521Google Scholar

    [55]

    Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92 256601Google Scholar

    [56]

    Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557Google Scholar

    [57]

    Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 PNAS 111 6900Google Scholar

    [58]

    Etienne T, Mosconi E, de Angelis F 2018 J. Phys. Chem. C 122 124Google Scholar

    [59]

    Hu S, Gao H, Qi Y, Tao Y, Li Y, Reimers J R, Bokdam M, Franchini C, Sante D D, Stroppa A, Ren W 2017 J. Phys. Chem. C 121 23045Google Scholar

    [60]

    Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Graetzel M, de Angelis F 2014 Nano Lett. 14 3608Google Scholar

    [61]

    Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi (RRL) 8 31Google Scholar

    [62]

    Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026Google Scholar

    [63]

    Marronnier A, Roma G, Carignano M A, Bonnassieux Y, Katan C, Even J, Mosconi E, de Angelis F 2019 J. Phys. Chem. C 123 291Google Scholar

    [64]

    McKechnie S, Frost J M, Pashov D, Azarhoosh P, Walsh A, van Schilfgaarde M 2018 Phys. Rev. B 98 085108Google Scholar

    [65]

    Beecher A N, Semonin O E, Skelton J M, Frost J M, Terban M W, Zhai H, Alatas A, Owen J S, Walsh A, Billinge S J L 2016 ACS Energy Lett. 1 880Google Scholar

    [66]

    Hutter E M, Gélvez-Rueda M C, Osherov A, Bulović V, Grozema F C, Stranks S D, Savenije T J 2017 Nat. Mater. 16 115Google Scholar

    [67]

    Eldridge P S, Leyland W J H, Lagoudakis P G, Harley R T, Phillips R T, Winkler R, Henini M, Taylor D 2010 Phys. Rev. B 82 045317Google Scholar

    [68]

    Wang T, Daiber B, Frost J M, Mann S A, Garnett E C, Walsh A, Ehrler B 2017 Energy Environ. Sci. 10 509Google Scholar

    [69]

    Wu B, Nguyen H T, Ku Z, Han G, Giovanni D, Mathews N, Fan H J, Sum T C 2016 Adv. Energy Mater. 6 1600551Google Scholar

    [70]

    Priest A N, Nicholas R J, Cheng H H, Van der Burgt M, Harris J J, Foxon C T 1998 Physica B 249–251 562

    [71]

    Choi Y J, Debbichi L, Lee D K, Park N G, Kim H, Kim D 2019 J. Phys. Chem. Lett. 10 2135Google Scholar

    [72]

    Chen X, Lu H, Li Z, Zhai Y, Ndione P F, Berry J J, Zhu K, Yang Y, Beard M C 2018 ACS Energy Lett. 3 2273Google Scholar

    [73]

    Yin J, Maity P, Xu L, El-Zohry A M, Li H, Bakr O M, Brédas J L, Mohammed O F 2018 Chem. Mater. 30 8538Google Scholar

    [74]

    Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999Google Scholar

    [75]

    König U, Weinberger P, Redinger J, Erschbaumer H, Freeman A J 1989 Phys. Rev. B 39 7492Google Scholar

    [76]

    Bertoni R, Nicholson C W, Waldecker L, Hübener H, Monney C, de Giovannini U, Puppin M, Hoesch M, Springate E, Chapman R T, Cacho C, Wolf M, Rubio A, Ernstorfer R 2016 Phys. Rev. Lett. 117 277201Google Scholar

    [77]

    Bel’kov V V, Ganichev S D, Ivchenko E L, Tarasenko S A, Weber W, Giglberger S, Olteanu M, Tranitz H P, Danilov S N, Schneider P, Wegscheider W, Weiss D, Prettl W 2005 J. Phys.: Conden. Matter 17 3405Google Scholar

    [78]

    Jusserand B, Richards D, Allan G, Priester C, Etienne B 1995 Phys. Rev. B 51 4707Google Scholar

    [79]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [80]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665Google Scholar

  • [1] Huang Hao, Niu Ben, Tao Ting-Ting, Luo Shi-Ping, Wang Ying, Zhao Xiao-Hui, Wang Kai, Li Zhi-Qiang, Dang Wei. Ultrafast carrier kinetics at surface and interface of Sb2Se3 film by transient reflectance. Acta Physica Sinica, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [2] Hong Lan, Ge Jun, Shuang Shan, Liu Da-Quan. Influence of Rashba effect and Zeeman effect on properties of bound magnetopolaron in an anisotropic quantum dot. Acta Physica Sinica, 2022, 71(1): 016301. doi: 10.7498/aps.71.20210803
    [3] Sun Hai-Ming. Rashba effect and flat band property in one-dimensional helical Se atomic chain. Acta Physica Sinica, 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [4] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [5] Zhao Xin-Wei, Lü Jun-Peng, Ni Zhen-Hua. Lead halide perovskites Fabry-Pérot resonant cavity laser. Acta Physica Sinica, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [6] Influence of Rashba effect and Zeeman effect on the properties of bound magnetopolaron in an Anisotropic Quantum Dot. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210803
    [7] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [8] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [9] Zhou Qing-Zhong, Guo Feng, Zhang Ming-Rui, You Qing-Liang, Xiao Biao, Liu Ji-Yan, Liu Cui, Liu Xue-Qing, Wang Liang. Impact of charge carrier recombination and energy disorder on the open-circuit voltage of polymer solar cells. Acta Physica Sinica, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [10] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [11] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [12] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [13] Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang. First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3. Acta Physica Sinica, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [14] Zhao Guo-Dong, Yang Ya-Li, Ren Wei. Recent progress of improper ferroelectricity in perovskite oxides. Acta Physica Sinica, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [15] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [16] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [17] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [18] Xu Tian-Ning, Wu Hui-Zhen, Sui Cheng-Hua. Rashba effect in PbTe/PbSrTe asymmetric quantum wells. Acta Physica Sinica, 2008, 57(12): 7865-7871. doi: 10.7498/aps.57.7865
    [19] Xiang Jun, Li Li-Ping, Su Wen-Hui. Preparation and characterization of a new perovskite-type oxide ion conductor KN b1-xMgxO3-δ. Acta Physica Sinica, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
    [20] . Acta Physica Sinica, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
Metrics
  • Abstract views:  20987
  • PDF Downloads:  1201
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2019
  • Accepted Date:  13 June 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回