Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of material structure on device efficiency of III-nitride intersubband photodetectors

Kang Jian-Bin Li Qian Li Mo

Citation:

Effects of material structure on device efficiency of III-nitride intersubband photodetectors

Kang Jian-Bin, Li Qian, Li Mo
PDF
HTML
Get Citation
  • The photodetection potential applications of III-nitride semiconductor are not only restricted in the ultraviolet range, but also extended to the infrared and even terahertz wave range through intersubband transition (ISBT) process between quantum-confined electronic states. The large conduction band offset (~1.75 eV for GaN/AlN heterostructures) and the strong electron-phonon interaction in these materials enable the III-nitride ISBT photodetectors to operate with ultrahigh speed for near-infrared telecommunication applications. Furthermore, due to the large energy of longitudinal optical phonons of nitride materials (~92 meV for GaN), the corresponding ISBT photodetectors are demonstrated as a promising candidate for operating in a specific terahertz (THz) range (5-12 THz) at high temperature, which is fundamentally in accessible to As-based devices. One of the major difficulties in realizing high performance III-nitride ISBT photodetectors is the existence of undesired polarization field inherited from conventional c-axis nitrides, which greatly makes the design complicated. In this paper, we theoretically study the influences of critical material structure parameters on the band structure, electron distribution, polarization field intensity, and tunneling effect based on near-infrared photovoltaic photodetectors and terahertz double-step photodetectors. III-nitride ISBT photodetectors operating in near-infrared are designed to be able to suppress the internal electric field in the active region, so that as many quantum wells as possible can be populated by electrons to enhance the absorption efficiency. It is found that with the increase of well periods and well doping concentration, a weaker average polarization field is observed, and as a result more wells will be populated with electrons. In addition, keeping the lattice constant of the contact layer material the same as the average lattice constant of the active region is beneficial to making more quantum wells effectively populated with electrons. On the other hand, the devices operating in a terahertz range require a more accurate design of energy band than the near-infrared ones due to its rather small energy interval. The design difficulties lie in how to ensure both the efficient absorption of photons and the following transportation of photo-excited electrons in the presence of polarization-induced field. The simulation results indicate that the polarization field in an active region is sensitive to the aluminum mole composition of barrier layer, the thickness of step well and step barrier layers, while even if the thickness of well and barrier layers change, the polarization field in barrier layer will stay the same. Moreover, reducing the aluminum mole composition of step barrier layer or appropriately increasing its thickness will be helpful in enhancing the photo-excited electrons tunneling. The above knowledge is beneficial to the optimal design of III-nitride ISBT photodetectors with high efficiency.
      Corresponding author: Kang Jian-Bin, kangjianbin@mtrc.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016003), and the National Natural Science Foundation of China (Grant Nos. 61804141, 61704163)
    [1]

    Preethi P, Bruce H, Shouleh N, Douglas L B, Kees K, Edoardo C 2018 Sensors 18 449Google Scholar

    [2]

    雷双瑛, 沈波, 张国义 2008 物理学报 57 2386Google Scholar

    Lei S Y, Shen B, Zhang G Y 2008 Acta Phys. Sin. 57 2386Google Scholar

    [3]

    Beeler M, Trichas E, Monroy E 2013 Semicond. Sci. Technol. 28 074022Google Scholar

    [4]

    Kandaswamy P K, Guillot F, Bellet-Amalric E, Monroy E, Nevou L, Tchernycheva M, Michon A, Julien F H, Baumann E, Giorgetta F R, Hofstetter D, Remmele T, Albrecht M, Birner S, Dang L S 2008 J. Appl. Phys. 104 093501Google Scholar

    [5]

    Vardi A, Bahir G, Guillot F, Bougerol C, Monroy E, Schacham S E, Tchernycheva M, Julien F H 2008 Appl. Phys. Lett. 92 011112Google Scholar

    [6]

    Lähnemann J, Ajay A, Den Hertog M I, Monroy E 2017 Nano Lett. 17 6954Google Scholar

    [7]

    Durmaz H, Nothern D, Brummer G, Moustakas T D, Paiella R 2016 Appl. Phys. Lett. 108 201102Google Scholar

    [8]

    Beeler M, Bougerol C, Bellet-Amalric E, Monroy E 2013 Appl. Phys. Lett. 103 091108Google Scholar

    [9]

    Rong X, Wang X Q, Chen G, Zheng X T, Wang P, Xu F J, Qin Z X, Tang N, Chen Y H, Sang L W, Sumiya M, Ge W K, Shen B 2015 Sci. Rep. 5 14386Google Scholar

    [10]

    Tchernycheva M, Nevou L, Doyennette L, Julien F H, Warde E, Guillot F, Monroy E, Bellet-Amalric E, Remmele T, Albrecht M 2006 Phys. Rev. B 73 125347Google Scholar

    [11]

    Iizuka N, Kaneko K, Suzuki N 2005 Opt. Express 13 3835Google Scholar

    [12]

    Kang J B, Li M, Li Q, Wang W P, Chen F L, Zhang J 2017 International Conference on Numerical Simulation of Optoelectronic Devices Copenhagen, Danmark, July 24–28, 2017 p215

    [13]

    Machhadani H, Kandaswamy P, Sakr S, Vardi A, Wirtmüller A, Nevou L, Guillot F, Pozzovivo G, Tchernycheva M, Lupu A, Vivien L, Croza P, Warde E, Bougerol C, Schacham S, Strasser G, Bahir G, Monroy E, Julien F H 2009 New J. Phys. 11 125023Google Scholar

    [14]

    Machhadani H, Tchernycheva M, Sakr S, Rigutti L, Colombelli R, Warde E, Mietze C, As D J, Julien F H 2011 Phys. Rev. B 83 075313Google Scholar

    [15]

    Wu F, Tian W, Yan W Y, Zhang J, Sun S C, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 J. Appl. Phys. 113 154505Google Scholar

    [16]

    Kang J B, Li Q, Li M, Wang W P, Chen F L, Zhang J 2018 International Conference on Numerical Simulation of Optoelectronic Devices Hong Kong, China, November 5–9, 2018 p111

    [17]

    Sudradjat F F, Zhang W, Woodward J, Durmaz H, Moustakas T D, Paiella R 2012 Appl. Phys. Lett. 100 241113Google Scholar

    [18]

    Liu D F, Cheng Y, He J F 2015 Superlattice Microst. 86 313Google Scholar

    [19]

    Fu H Q, Lu Z J, Huang X Q, Chen H, Zhao Y J 2016 J. Appl. Phys. 119 174502Google Scholar

    [20]

    Cen L B, Shen B, Qin Z X, Zhang G Y 2008 J. Appl. Phys. 104 063114Google Scholar

    [21]

    Birner S, Schindler C, Greck P, Sabathil M, Vogl P 2009 J. Comput. Electron. 8 267Google Scholar

    [22]

    Giorgetta F R, Baumann E, Guillot F, Monroy E, Hofstetter D 2007 Electron. Lett. 43 1Google Scholar

    [23]

    Hofstetter D, Baumann E, Giorgetta F R, Guillot F, Leconte S, Monroy E 2007 Appl. Phys. Lett. 91 131115Google Scholar

    [24]

    Kandaswamy P K, Machhadani H, Kotsar Y, Sakr S, Das A, Tchernycheva M, Rapenne L, Sarigiannidou E, Julien F H, Monroy E 2010 Appl. Phys. Lett. 96 141903Google Scholar

  • 图 1  典型光伏型GaN/AlN子带跃迁探测器量子阱周期数分别为10, 20, 50情况下的导带结构和电子浓度分布, 左下侧的插图为器件材料结构示意图

    Figure 1.  Conduction band profile and electron distribution for typical photovoltaic nitride intersubband photodetectors, with ten periods, twenty periods and fifty periods of GaN/AlN quantum wells, respectively. The inset shows the schematic image of the sample structure.

    图 2  典型光伏型GaN/AlN子带跃迁探测器量子势阱掺杂浓度分别为5 × 1018 cm–3, 2 × 1019 cm–3和5 × 1019 cm–3情况下的导带结构和电子浓度分布

    Figure 2.  Conduction band profile and electron distribution for typical photovoltaic nitride intersubband photodetectors doped to 5 × 1018 cm–3, 2 × 1019 cm–3 and 5 × 1019 cm–3 in quantum wells, respectively.

    图 3  典型光伏型GaN/AlN子带跃迁探测器分别采用GaN, Al0.5Ga0.5N和AlN材料作为接触层情况下的导带结构和电子浓度分布

    Figure 3.  Conduction band profile and electron distribution for typical photovoltaic nitride intersubband photodetectors, with GaN, Al0.5Ga0.5N and AlN contact layers, respectively.

    图 4  基于(a)单一量子阱结构和(b)双台阶量子阱结构的太赫兹波段氮化物子带跃迁探测器能带结构和电子波函数分布

    Figure 4.  Conduction band profile and squared envelope functions for terahertz intersubband photodetectors based on (a) a single barrier and a single well structure and (b) a double-step structure.

    图 5  双台阶结构器件中势垒层电场(a)和势阱层电场(b)随势垒层Al组分变化的关系

    Figure 5.  (a) Barrier layer polarization fields and (b) well layer polarization fields as a function of Al mole composition of barrier layer (xbr) for double-step devices.

    图 6  双台阶结构器件中势垒层极化电场随各层材料厚度变化的关系(右侧纵坐标), 以及为了保持势垒层中极化电场始终为零, 势垒层Al组分随厚度的变化关系(左侧纵坐标)

    Figure 6.  The influence of each layer thickness on the barrier layer polarization fields (right ordinates) and the change of Al mole composition of barrier under the condition that the polarization field in barrier layer is kept at zero (left ordinates) for double-step devices.

    图 7  双台阶结构器件台阶势垒层Al组分(a)和厚度(b)不同时载流子隧穿透过率随载流子能量的变化关系

    Figure 7.  Transmission coefficient as a function of energy for double-step devices: (a) With different Al mole compositions of step barrier layer; (b) with different thicknesses of step barrier layer.

  • [1]

    Preethi P, Bruce H, Shouleh N, Douglas L B, Kees K, Edoardo C 2018 Sensors 18 449Google Scholar

    [2]

    雷双瑛, 沈波, 张国义 2008 物理学报 57 2386Google Scholar

    Lei S Y, Shen B, Zhang G Y 2008 Acta Phys. Sin. 57 2386Google Scholar

    [3]

    Beeler M, Trichas E, Monroy E 2013 Semicond. Sci. Technol. 28 074022Google Scholar

    [4]

    Kandaswamy P K, Guillot F, Bellet-Amalric E, Monroy E, Nevou L, Tchernycheva M, Michon A, Julien F H, Baumann E, Giorgetta F R, Hofstetter D, Remmele T, Albrecht M, Birner S, Dang L S 2008 J. Appl. Phys. 104 093501Google Scholar

    [5]

    Vardi A, Bahir G, Guillot F, Bougerol C, Monroy E, Schacham S E, Tchernycheva M, Julien F H 2008 Appl. Phys. Lett. 92 011112Google Scholar

    [6]

    Lähnemann J, Ajay A, Den Hertog M I, Monroy E 2017 Nano Lett. 17 6954Google Scholar

    [7]

    Durmaz H, Nothern D, Brummer G, Moustakas T D, Paiella R 2016 Appl. Phys. Lett. 108 201102Google Scholar

    [8]

    Beeler M, Bougerol C, Bellet-Amalric E, Monroy E 2013 Appl. Phys. Lett. 103 091108Google Scholar

    [9]

    Rong X, Wang X Q, Chen G, Zheng X T, Wang P, Xu F J, Qin Z X, Tang N, Chen Y H, Sang L W, Sumiya M, Ge W K, Shen B 2015 Sci. Rep. 5 14386Google Scholar

    [10]

    Tchernycheva M, Nevou L, Doyennette L, Julien F H, Warde E, Guillot F, Monroy E, Bellet-Amalric E, Remmele T, Albrecht M 2006 Phys. Rev. B 73 125347Google Scholar

    [11]

    Iizuka N, Kaneko K, Suzuki N 2005 Opt. Express 13 3835Google Scholar

    [12]

    Kang J B, Li M, Li Q, Wang W P, Chen F L, Zhang J 2017 International Conference on Numerical Simulation of Optoelectronic Devices Copenhagen, Danmark, July 24–28, 2017 p215

    [13]

    Machhadani H, Kandaswamy P, Sakr S, Vardi A, Wirtmüller A, Nevou L, Guillot F, Pozzovivo G, Tchernycheva M, Lupu A, Vivien L, Croza P, Warde E, Bougerol C, Schacham S, Strasser G, Bahir G, Monroy E, Julien F H 2009 New J. Phys. 11 125023Google Scholar

    [14]

    Machhadani H, Tchernycheva M, Sakr S, Rigutti L, Colombelli R, Warde E, Mietze C, As D J, Julien F H 2011 Phys. Rev. B 83 075313Google Scholar

    [15]

    Wu F, Tian W, Yan W Y, Zhang J, Sun S C, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 J. Appl. Phys. 113 154505Google Scholar

    [16]

    Kang J B, Li Q, Li M, Wang W P, Chen F L, Zhang J 2018 International Conference on Numerical Simulation of Optoelectronic Devices Hong Kong, China, November 5–9, 2018 p111

    [17]

    Sudradjat F F, Zhang W, Woodward J, Durmaz H, Moustakas T D, Paiella R 2012 Appl. Phys. Lett. 100 241113Google Scholar

    [18]

    Liu D F, Cheng Y, He J F 2015 Superlattice Microst. 86 313Google Scholar

    [19]

    Fu H Q, Lu Z J, Huang X Q, Chen H, Zhao Y J 2016 J. Appl. Phys. 119 174502Google Scholar

    [20]

    Cen L B, Shen B, Qin Z X, Zhang G Y 2008 J. Appl. Phys. 104 063114Google Scholar

    [21]

    Birner S, Schindler C, Greck P, Sabathil M, Vogl P 2009 J. Comput. Electron. 8 267Google Scholar

    [22]

    Giorgetta F R, Baumann E, Guillot F, Monroy E, Hofstetter D 2007 Electron. Lett. 43 1Google Scholar

    [23]

    Hofstetter D, Baumann E, Giorgetta F R, Guillot F, Leconte S, Monroy E 2007 Appl. Phys. Lett. 91 131115Google Scholar

    [24]

    Kandaswamy P K, Machhadani H, Kotsar Y, Sakr S, Das A, Tchernycheva M, Rapenne L, Sarigiannidou E, Julien F H, Monroy E 2010 Appl. Phys. Lett. 96 141903Google Scholar

  • [1] Fang Jing-Yue, Wen Zhi-Hao, Zhu Hai-Bi-Tao, Li Xin-Xing, Deng Lian-Wen. 16-channel snapshot multispectral imaging based on integrated Fabry Perot microcavity array. Acta Physica Sinica, 2024, 73(7): 074205. doi: 10.7498/aps.73.20231775
    [2] Dong Pan, Tian Chang, Li Jie, Wang Tao, Yu Hai-Tao, Su Ming-Xu, He Jia-Long, Shi Jin-Shui. Mie scattering based on-line measurement of droplet from vacuum arc. Acta Physica Sinica, 2023, 72(8): 084203. doi: 10.7498/aps.72.20222406
    [3] Jiang Wei, Jiang Hao-Yu, Yi Han, Fan Rui-Rui, Cui Zeng-Qi, Sun Kang, Zhang Guo-Hui, Tang Jing-Yu, Sun Zhi-Jia, Ning Chang-Jun, Gao Ke-Qing, An Qi, Bai Huai-Yong, Bao Jie, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yong-Hao, Chen Yu-Kai, Chen Zhen, Feng Chang-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Luan Guang-Yuan, Mu Qi-Li, Qi Bin-Bin, Ren Jie, Ren Zhi-Zhou, Ruan Xi-Chao, Song Zhao-Hui, Song Ying-Peng, Sun Hong, Sun Xiao-Yang, Tan Zhi-Xin, Tang Hong-Qing, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wang Zhao-Hui, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Lin-Hao, Zhang Qi-Wei, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, The CSNS Back-n Collaboration  . Detector calibration based on secondary protons of Back-n white neutron source. Acta Physica Sinica, 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [4] Liu Wen-Quan, Chao Ke-Fu, Wu Wen-Jie, Bao Fu-Quan, Zhou Bing-Qing. CaAlSiN3:Eu2+ red phosphors synthesized by atmospheric nitrogen and their luminescence properties. Acta Physica Sinica, 2016, 65(20): 207801. doi: 10.7498/aps.65.207801
    [5] Liu Ke, Ma Wen-Quan, Huang Jian-Liang, Zhang Yan-Hua, Cao Yu-Lian, Huang Wen-Jun, Zhao Cheng-Cheng. Three-color InAs/GaAs quantum dot infrared photodetector with AlGaAs inserting layer. Acta Physica Sinica, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [6] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [7] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] Hu Hai-Fan, Wang Ying, Chen Jie, Zhao Shi-Bin. Full three-dimensional simulations of optimized active pixel detector for ionizing particle detection. Acta Physica Sinica, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [9] Deng Ning-Qin, Zhao Bao-Sheng, Sheng Li-Zhi, Yan Qiu, Yang Hao, Liu Duo. A space audio cummunication system based on X-ray. Acta Physica Sinica, 2013, 62(6): 060705. doi: 10.7498/aps.62.060705
    [10] Wang Peng, Zhao Bao-Sheng, Sheng Li-Zhi, Hu Hui-Jun, Yan Qiu-Rong. Research of the navigation accuracy for the X-ray pulsar navigation system. Acta Physica Sinica, 2012, 61(20): 209702. doi: 10.7498/aps.61.209702
    [11] Yu Ben-Hai, Chen Dong. First-principles study on the electronic structure and phase transition of α-, β- and γ-Si3N4. Acta Physica Sinica, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [12] Li Pan-Chi, Wang Hai-Ying, Song Kao-Ping, Yang Er-Long. Research on the improvement of quantum potential well-based particle swarm optimization algorithm. Acta Physica Sinica, 2012, 61(6): 060302. doi: 10.7498/aps.61.060302
    [13] Wang Guang-Qiang, Wang Jian-Guo, Tong Chang-Jiang, Li Xiao-Ze, Wang Xue-Feng. Analysis and design of semiconductor detector for high-power terahertz pulse. Acta Physica Sinica, 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [14] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [15] Zhao Fei-Fei, Liu Yong-An, Hu Hui-Jun, Zhao Bao-Sheng. Properties of photon counting imaging system with Si thin films. Acta Physica Sinica, 2010, 59(10): 7096-7104. doi: 10.7498/aps.59.7096
    [16] Hou Li-Fei, Li Fang, Yuan Yong-Teng, Yang Guo-Hong, Liu Shen-Ye. Chemical vapor deposited diamond detectors for soft X-ray power measurement. Acta Physica Sinica, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [17] Xing Yan-Hui, Deng Jun, Han Jun, Li Jian-Jun, Shen Guang-Di. Investigation of n-type GaN deposited on sapphire substrate with different small misorientations. Acta Physica Sinica, 2009, 58(4): 2644-2648. doi: 10.7498/aps.58.2644
    [18] Lin Gui-Jiang, Zhou Zhi-Wen, Lai Hong-Kai, Li Cheng, Chen Song-Yan, Yu Jin-Zhong. Energy band design for Si/SiGe quantum cascade laser. Acta Physica Sinica, 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
    [19] Li Liang-Xin, Hu Yong-Hua. Intersubband and intraband transitions of self-assembled quantum wires for the infrared detectors. Acta Physica Sinica, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [20] Wang Chong, Zhang Peng-Xiang, Zhang Guo-Yong. Optimum thickness for laser induced thermoelectric voltage effect in high Tc superconductor and CMR thin film. Acta Physica Sinica, 2004, 53(6): 1727-1730. doi: 10.7498/aps.53.1727
Metrics
  • Abstract views:  6060
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2019
  • Accepted Date:  08 July 2019
  • Available Online:  01 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回