Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz vortex beam generation based on reflective metasurface

Li Xiao-Nan Zhou Lu Zhao Guo-Zhong

Citation:

Terahertz vortex beam generation based on reflective metasurface

Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong
PDF
HTML
Get Citation
  • The electromagnetic wave with spiral wavefront is a vortex beam carrying orbital angular momentum. The phase singularity of the vortex beam has special applications in the fields of particle manipulation and communication. In this paper, a terahertz (THz) wide-band vortex beam generator based on reflective metasurface is proposed and simulated. The device consists of a metasurface-dielectric-metal three-layer structure, and the top layer is a metasurface composed of two orthogonal I-shaped metal structural units. The intermediate layer of polyimide medium, and the bottom layer is of metal as a reflecting plate. The CST microwave studio is used to simulate the reflection performance of unit cell. The structure parameters are optimized to obtain the better performance. A set of optimed structure parameters is determined. According to the phase principle of Pancharatnam-Berry (P-B), by rotating the angle of the top-layer I-type metal structure, the reflection amplitudes of the unit cell structure at different rotation angles are required to approximately equal while the phase changes linearly with rotation angle and reaches a range of 2lπ for the topological charge number l. These cell structures are arranged according to the phase principle mentioned above. The metasurfaces of different topological charge numbers are designed to generate the corresponding vortex beams. In this paper, the metasurfaces with topological charge numbers 1 and 2 are designed. The reflection amplitude and phase of the circularly polarized THz beam incident vertically on the metasurface are simulated by using CST microwave studio. The simulation results show that in a frequency range of 0.8−1.4 THz, the metasurface can convert the circularly polarized terahertz beam into a vortex beam with a different topological charge number. In addition, in order to illustrate that the metasurface designed can produce a higher topological charge number of vortex beam, a metasurface with a topological charge number of 3 is designed as an example. The reflection amplitude and phase of the circularly polarized THz beam at a frequency of 1.1 THz is simulated. The results show that the designed metasurface can produce a vortex beam with a topological charge number of 3. The higher topological charges of vortex beam can also be generated according to the corresponding phase arrangement. The device has a relatively wide operating bandwidth, simple structure, high conversion efficiency, and has the potential application in terahertz vortex beam generation.
      Corresponding author: Zhao Guo-Zhong, guozhong-zhao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 5307625130)
    [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146Google Scholar

    [2]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowsk R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [3]

    Janek M, Zich D, Naftaly M 2014 Mater. Chem. Phys. 145 278Google Scholar

    [4]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar

    [5]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085Google Scholar

    [6]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Lotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [7]

    Zhang Z W, Wang K J, Lei Y, Zhang Z Y, Zhao Y M, Li C Y, Gu A, Shi N C, Zhao K, Zhan H L, Zhang C L 2015 Science China 58 124202Google Scholar

    [8]

    Heljo V P, Nordberg A, Tenho M, Virtanen T, Jouppila K, Salonen J, Maunu S L, Juppo A M 2012 Pharm. Res. 29 2684Google Scholar

    [9]

    Kirilenko M S, Khonina S N 2013 Optical Memory and Neural Networks 22 81Google Scholar

    [10]

    Chavez-Cerda S, Padgett M J, Allison I, New G H C, Gutierrez-Vega J C, Neil A T O, Vicar I M, Courtial J 2002 J. Optics B: Quantum Semiclass Opt. 4 S52Google Scholar

    [11]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nature Comm. 3 1Google Scholar

    [12]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antenn. Propag. 58 565Google Scholar

    [13]

    Thide B, Then H, SjoHolm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [14]

    付亚男, 张新群, 赵国忠, 李永花, 于佳怡 2017 物理学报 66 180701

    Fu Y N, Zhang X Q, Zhao G Z, Li Y H, Yu J Y 2017 Acta Phys. Sin. 66 180701

    [15]

    李永花, 周璐, 赵国忠 2018 中国激光 45 0314001Google Scholar

    Li Y H, Zhou L, Zhao G Z 2018 Chin. J. Lasers 45 0314001Google Scholar

    [16]

    Li H, Xiao B Y, Huang X J, Yang H L 2015 Phys. Scr. 90 1Google Scholar

    [17]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [18]

    Huang J, Pogorzelski R J 1998 IEEE Trans. Antenn. Propag. 46 650Google Scholar

    [19]

    Martynyuk A E, Martinez-Lopez J I, Martynyuk N A 2004 IEEE Trans. Antenn. Propag. 52 142Google Scholar

    [20]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701

    [21]

    Genevet P, Yu N F, Aieta F, Lin J, Kats M A, et al. 2012 Appl. Phys. Lett. 100 013101Google Scholar

    [22]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [23]

    Zhang K, Yuan Y Y, Zhang D W, Ding X M, Rstni B, Burokur S N, Lu M J, Tang J, Wu Q 2018 Opt. Express 26 1351Google Scholar

    [24]

    Luo W J, Sun S L, Xu H X, He Q, Zhou L 2017 Phys. Rev. Appl. 7 044033Google Scholar

    [25]

    Xu H H, Wang G M, Cai T, Xiao J, Zhuang Y Q 2016 Opt. Express 24 27836Google Scholar

  • 图 1  超表面单元结构示意图 (a)顶视图; (b)侧视图

    Figure 1.  Schematic diagram of the unit cell of metasurface: (a) Top view; (b) side view.

    图 2  线偏振光入射单元结构产生的反射相位和振幅谱 (a)相位谱; (b)振幅谱

    Figure 2.  Reflected phase and amplitude spectrum produced by linearly polarized light incident unit call: (a) Phase; (b) amplitude.

    图 3  仿真得到的不同转角的相位和反射振幅

    Figure 3.  The phase and reflection amplitude of different corners simulated.

    图 4  不同转角单元结构的反射相位和振幅谱 (a) LCP入射的相位谱; (b) RCP入射的相位谱; (c) LCP入射的振幅谱; (d) RCP入射的振幅谱

    Figure 4.  Reflective phase and amplitude spectra of unit cell structure under different rotation angle: (a) Phase spectra at LCP incident; (b) phase spectra at RCP incident; (c) amplitude spectra at LCP incident; (d) amplitude spectra at RCP incident.

    图 5  两种用于产生拓扑荷数分别为 (a) l = 1和(b) l = 2的涡旋波束超表面结构

    Figure 5.  Two kinds of metasurface structures for generating the vortex beam with topological charge numbers (a) l = 1 and (b) l = 2.

    图 6  超表面产生l = 1和l = 2的涡旋波束反射振幅和相位分布 LCP入射l = 1超表面的(a)振幅分布和(b)相位分布; RCP入射l = 2超表面的(c)振幅分布和(d)相位分布

    Figure 6.  Reflective amplitude and phase distributions of vortex beams with l = 1 and l = 2 generated by metasurface. LCP incident l = 1 metasurface: (a) amplitude distribution and (b) phase distribution; RCP incident l = 2 metasurface: (c) amplitude distribution and (d) phase distribution.

    图 7  不同频率下l = 1和l = 3超表面产生的反射涡旋波束振幅、相位分布 l = 1超表面(a) 0.8 THz频率下振幅分布, (b) 0.8 THz频率下相位分布, (c) 1.4 THz频率下振幅分布, (d) 1.4 THz频率下相位分布; l = 3超表面(e) 1.1 THz频率下振幅分布, (f) 1.1 THz频率下相位分布

    Figure 7.  The amplitude and phase distribution of reflective vortex beam generated by the LCP incident l = 1 and l = 3 metasurface at different frequencies. l = 1: (a) amplitude distribution at 0.8 THz, (b) phase distribution at 0.8 THz, (c) amplitude distribution at 1.4 THz, (d) phase distribution at 1.4 THz. l = 3: (e) amplitude distribution at 1.1 THz, (f) phase distribution at 1.1 THz.

  • [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146Google Scholar

    [2]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowsk R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [3]

    Janek M, Zich D, Naftaly M 2014 Mater. Chem. Phys. 145 278Google Scholar

    [4]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716Google Scholar

    [5]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085Google Scholar

    [6]

    Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Lotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [7]

    Zhang Z W, Wang K J, Lei Y, Zhang Z Y, Zhao Y M, Li C Y, Gu A, Shi N C, Zhao K, Zhan H L, Zhang C L 2015 Science China 58 124202Google Scholar

    [8]

    Heljo V P, Nordberg A, Tenho M, Virtanen T, Jouppila K, Salonen J, Maunu S L, Juppo A M 2012 Pharm. Res. 29 2684Google Scholar

    [9]

    Kirilenko M S, Khonina S N 2013 Optical Memory and Neural Networks 22 81Google Scholar

    [10]

    Chavez-Cerda S, Padgett M J, Allison I, New G H C, Gutierrez-Vega J C, Neil A T O, Vicar I M, Courtial J 2002 J. Optics B: Quantum Semiclass Opt. 4 S52Google Scholar

    [11]

    Genevet P, Lin J, Kats M A, Capasso F 2012 Nature Comm. 3 1Google Scholar

    [12]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antenn. Propag. 58 565Google Scholar

    [13]

    Thide B, Then H, SjoHolm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [14]

    付亚男, 张新群, 赵国忠, 李永花, 于佳怡 2017 物理学报 66 180701

    Fu Y N, Zhang X Q, Zhao G Z, Li Y H, Yu J Y 2017 Acta Phys. Sin. 66 180701

    [15]

    李永花, 周璐, 赵国忠 2018 中国激光 45 0314001Google Scholar

    Li Y H, Zhou L, Zhao G Z 2018 Chin. J. Lasers 45 0314001Google Scholar

    [16]

    Li H, Xiao B Y, Huang X J, Yang H L 2015 Phys. Scr. 90 1Google Scholar

    [17]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [18]

    Huang J, Pogorzelski R J 1998 IEEE Trans. Antenn. Propag. 46 650Google Scholar

    [19]

    Martynyuk A E, Martinez-Lopez J I, Martynyuk N A 2004 IEEE Trans. Antenn. Propag. 52 142Google Scholar

    [20]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701

    [21]

    Genevet P, Yu N F, Aieta F, Lin J, Kats M A, et al. 2012 Appl. Phys. Lett. 100 013101Google Scholar

    [22]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [23]

    Zhang K, Yuan Y Y, Zhang D W, Ding X M, Rstni B, Burokur S N, Lu M J, Tang J, Wu Q 2018 Opt. Express 26 1351Google Scholar

    [24]

    Luo W J, Sun S L, Xu H X, He Q, Zhou L 2017 Phys. Rev. Appl. 7 044033Google Scholar

    [25]

    Xu H H, Wang G M, Cai T, Xiao J, Zhuang Y Q 2016 Opt. Express 24 27836Google Scholar

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [5] Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei. Nano-printing technology based double-spiral terahertz tunable metasurface. Acta Physica Sinica, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [6] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band. Acta Physica Sinica, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [8] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [10] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [11] Fu Ya-Nan, Zhang Xin-Qun, Zhao Guo-Zhong, Li Yong-Hua, Yu Jia-Yi. A broadband polarization converter based on resonant ring in terahertz region. Acta Physica Sinica, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [12] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [13] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [14] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [15] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [16] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Design and verification of a two-dimensional wide band phase-gradient metasurface. Acta Physica Sinica, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [17] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [19] Chen Yu-Ting-Wu, Han Peng-Yu, Kuo Mei-Ling, Lin Shawn-Yu, Zhang Xi-Cheng. Terahertz broadband antireflection photonic device with graded refractive indices. Acta Physica Sinica, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [20] Zhang Qing-Bin, Lan Peng-Fei, Hong Wei-Yi, Liao Qing, Yang Zhen-Yu, Lu Pei-Xiang. The effect of controlling laser field on broadband suppercontinuum generation. Acta Physica Sinica, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
Metrics
  • Abstract views:  11385
  • PDF Downloads:  436
  • Cited By: 0
Publishing process
  • Received Date:  10 July 2019
  • Accepted Date:  28 August 2019
  • Available Online:  27 November 2019
  • Published Online:  05 December 2019

/

返回文章
返回