Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological surface plasmon polaritons

Geng Yi-Fei Wang Zhu-Ning Ma Yao-Guang Gao Fei

Citation:

Topological surface plasmon polaritons

Geng Yi-Fei, Wang Zhu-Ning, Ma Yao-Guang, Gao Fei
PDF
HTML
Get Citation
  • The miniaturization of electromagnetic devices is a long-term theme for the development of modern technologies to achieve higher flexibilities, better performances, and higher density integration. Surface plasmon polaritons (SPPs) provide a powerful solution for reducing the size of integrated electromagnetic device due to its deep subwavelength confinement. However, materials or structures that support SPPs inevitably have impurities or structural defects, which leads to the loss of the propagating mode. In order to avoid scattering from impurities or defects, topological structures are introduced to address issues of discontinuities and have been proved to be an effective solution. In this paper, we first review the recent efforts devoted to SPPs based optical devices and those of artificial surface plasmon in terahertz/microwave band, and then summarize several important topological systems of SPPs. Finally, we present our perspectives on the future developments of this field.
      Corresponding author: Ma Yao-Guang, mayaoguang@zju.edu.cn ; Gao Fei, gaofeizju@zju.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61801426)
    [1]

    Wood R W 1902 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Abingdon: Taylor & Francis) pp4–396

    [2]

    Pines D 1956 Rev. Mod. Phys. 28 184Google Scholar

    [3]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [4]

    Ritchie R H, Arakawa E, Cowan J, Hamm R 1968 Phys. Rev. Lett. 21 1530Google Scholar

    [5]

    Cunningham S, Maradudin A, Wallis R 1974 Phys. Rev. B 10 3342Google Scholar

    [6]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [7]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt 7 S97Google Scholar

    [8]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 54

    [9]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [10]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [11]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [12]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [13]

    Chen W J, Jiang S J, Chen X D, Zhu B C, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782Google Scholar

    [14]

    Gao F, Gao Z, Shi X H, Yang Z J, Lin X, Xu H Y, Joannopoulos J D, Soljacic M, Chen H S, Lu L, Chong Y D, Zhang B L 2016 Nat. Commun. 7 11619Google Scholar

    [15]

    Cheng X J, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542Google Scholar

    [16]

    Dong J W, Chen X D, Zhu H Y, Wang Y, Zhang X 2017 Nat. Mater. 16 298Google Scholar

    [17]

    Gao F, Xue H R, Yang Z J, Lai K F, Yu Y, Lin X, Chong Y D, Shvets G, Zhang B L 2018 Nat. Phys. 14 140Google Scholar

    [18]

    Gao W L, Lawrence M, Yang B A, Liu F, Fang F Z, Beri B, Li J S, Zhang S 2015 Phys. Rev. Lett. 114 037402Google Scholar

    [19]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [20]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [21]

    Liang G, Chong Y 2013 Phys. Rev. Lett. 110 203904Google Scholar

    [22]

    Ma T, Khanikaev A B, Mousavi S H, Shvets G 2015 Phys. Rev. Lett. 114 127401Google Scholar

    [23]

    Ma T, Shvets G 2016 New J. Phys. 18 025012Google Scholar

    [24]

    Noh J, Huang S, Chen K P, Rechtsman M C 2018 Phys. Rev. Lett. 120 063902Google Scholar

    [25]

    Pasek M, Chong Y D 2014 Phys. Rev. B 89 075113Google Scholar

    [26]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [27]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [28]

    Xiao M, Lin Q, Fan S H 2016 Phys. Rev. Lett. 117 057401Google Scholar

    [29]

    Lu L, Joannopoulos J D, Soljacic M 2016 Nat. Phys. 12 626Google Scholar

    [30]

    Jin D, Christensen T, Soljačić M, Fang N X, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301Google Scholar

    [31]

    Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243Google Scholar

    [32]

    Jung M, Fan Z, Shvets G 2018 Phys. Rev. Lett. 121 086807Google Scholar

    [33]

    Gao Z, Gao F, Zhang Y M, Xu H Y, Luo Y, Zhang B L 2017 Adv. Mater. 29 1700018Google Scholar

    [34]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348Google Scholar

    [35]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [36]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [37]

    Yves S, Fleury R, Berthelot T, Fink M, Lemoult F, Lerosey G 2017 Nat. Commun. 8 16023Google Scholar

    [38]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343Google Scholar

    [39]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489Google Scholar

    [40]

    Ju L, Shi Z W, Nair N, Lv Y C, Jin C H, Velasco J, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J, Wang F 2015 Nature 520 650Google Scholar

    [41]

    Gao Z, Yang Z J, Gao F, Xue H R, Yang Y H, Dong J W, Zhang B L 2017 Phys. Rev. B 96 201402Google Scholar

    [42]

    Wu X X, Meng Y, Tian J X, Huang Y Z, Xiang H, Han D Z, Wen W J 2017 Nat. Commun. 8 1304Google Scholar

    [43]

    Yin X B, Ye Z L, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [44]

    Kitagawa T, Berg E, Rudner M, Demler E 2010 Phys. Rev. B 82 235114Google Scholar

    [45]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429Google Scholar

    [46]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005

    [47]

    Lohse M, Schweizer C, Price H M, Zilberberg O, Bloch I 2018 Nature 553 55Google Scholar

    [48]

    Zilberberg O, Huang S, Guglielmon J, Wang M H, Chen K P, Kraus Y E, Rechtsman M C 2018 Nature 553 59Google Scholar

    [49]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [50]

    Khanikaev A B, Mousavi S H, Shvets G, Kivshar Y S 2010 Phys. Rev. Lett. 105 126804Google Scholar

    [51]

    Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901Google Scholar

    [52]

    Ni X, Purtseladze D, Smirnova D A, Slobozhanyuk A, Alù A, Khanikaev A B 2018 Sci. Adv. 4 eaap8802Google Scholar

    [53]

    Yu N F, Wang Q J, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H, Capasso F 2010 Nat. Mater. 9 730Google Scholar

    [54]

    Karl N J, McKinney R W, Monnai Y, Mendis R, Mittleman D M 2015 Nat. Photonics 9 717Google Scholar

    [55]

    Ma J J, Karl N J, Bretin S, Ducournau G, Mittleman D M 2017 Nat. Commun. 8 729Google Scholar

    [56]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304Google Scholar

    [57]

    Chen H T, O'hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J 2008 Nat. Photonics 2 295Google Scholar

  • 图 1  (a)杂质和结构缺陷对表面等离激元传输的影响; (b)拓扑表面等离激元的鲁棒传输特性

    Figure 1.  (a) Effect of impurity and structural defects on surface plasmon transport; (b) robust propagation characteristics of topological surface plasmons.

    图 2  二维拓扑表面等离激元晶体及其边界态[30] (a)石墨烯中圆孔三角点阵的示意图, 在外加磁场B作用下, 有限晶格支持拓扑保护的单向边缘等离子体; (b)在B ≠ 0的石墨烯中的等离激元色散能带, 当孔径d ≠ 0, 出现完全带隙; (c)不同磁感应强度下的边界态及其鲁棒性

    Figure 2.  Two-dimensional topological surface plasmon crystals and their boundary states [30]: (a) Schematic diagram of triangular circular hole lattices in graphene, under the action of an applied magnetic field B, finite lattices support a unidirectional edge plasma with topological protection; (b) energy band diagram of plasmon in graphene of B ≠ 0, when d ≠ 0, the complete band gap appears; (c) edge states under different magnetic induction and their robustness

    图 3  (a)基于石墨烯的能谷等离子激元晶体示意图: 由偏置电压V0与相对于石墨烯晶格存在夹角的栅结构; (b)狄拉克点处的能带; (c) yz(x = 0)平面上的电场分布; (d)两种类型的边界; (e)不同夹角对应的谷陈数值; (f)图(d)所示一维结构能带[32]

    Figure 3.  (a) Schematic diagram of graphene-based energy valley plasmon crystals: a gate structure with a biased voltage V0 and an angle with respect to the graphene lattice; (b) energy band at the Dirac point; (c) electric field distribution on the yz (x = 0) plane; (d) two types of boundaries; (e) valley chern numbers corresponding to different angles; and (f) the one-dimensional structural energy band shown in Fig. (d).

    图 4  人工表面等离激元QSH[27,37] (a)基于介质圆柱的光子QSH阵列; (b)图(a)中结构的能带; (c)单元胞收缩的SSPPs结构; (d)单元胞扩张的SSPPs结构; (e)SSPPs结构的能带仿真结果; (f)通过组合(c)和(d)中的结构构建边界; (g)边界态的模场分布

    Figure 4.  Spoof plasmonic QSH[27,37]: (a) Photonic QSH with dielectric cylinders, the zoom in figure shows the hexagonal cluster; (b) edge states of photonic QSH; (c) spoof plasmonic structure whose unit cells of hexagonal clusters get shrunk, leading to zero spin Chern number; (d) spoof plasmonic structure whose unit cells of hexagonal clusters get expanded, which generates non vanishing spin Chern number; (e) simulated edge states at a domain wall between structures of (c) and (d); (f) constructed domain wall by combining structures in (c) and (d); (g) field patterns of edge states

    图 5  人工表面等离激元VHE和QVH[38,41,42] (a)二维过渡金属二硫化物(TMDS)的示意图; (b)第一布里渊区TMDS的能带结构; (c)用于VHE的SSPPs结构; (d) SSPPs-VHE的模场扫描结果; (e)用于QVH的SSPPs结构; (f) SSPPs-QVH的模场测试结果

    Figure 5.  Spoof plasmonic VHE and QVH[38,41,42]: (a) Schematic of TMDS; (b) band structure of TMDS in the first Brillouin zone; (c) spoof-SPP platform for VHE; (d) experimental demonstration of spoof-SPP VHE; (e) spoof-SPP platform for QVH; (f) experimental demonstration of spoof-SPP QVH

    图 6  基于SSPPs结构的反常Floquet拓扑相[14] (a)人工表面等离激元环的照片; (b)实验中5 × 5点阵; (c)随着环间耦合的增加产生的拓扑相变; (d)当激励源频率为11.3 GHz时在阵列内观察到的局域模场; (e)在11.3 GHz频率观察到的边界态; (f)边界态绕过缺陷晶格传播

    Figure 6.  Spoof plasmonic demonstration of the anomalous Floquet topological phase[14]: (a) Photo of spoof plasmonic rings; (b) a 5 by 5 lattice inexperiment; (c) topological transition as the inter-ring coupling increases; (d) observed field pattern when the excitation is inside the bulk at frequency11.3 GHz; (e) observed edge state at frequency 11.3 GHz; (f) the edge state circumvents and tunnels through a defect lattice

  • [1]

    Wood R W 1902 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Abingdon: Taylor & Francis) pp4–396

    [2]

    Pines D 1956 Rev. Mod. Phys. 28 184Google Scholar

    [3]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [4]

    Ritchie R H, Arakawa E, Cowan J, Hamm R 1968 Phys. Rev. Lett. 21 1530Google Scholar

    [5]

    Cunningham S, Maradudin A, Wallis R 1974 Phys. Rev. B 10 3342Google Scholar

    [6]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [7]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt 7 S97Google Scholar

    [8]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 54

    [9]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [10]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [11]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [12]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [13]

    Chen W J, Jiang S J, Chen X D, Zhu B C, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782Google Scholar

    [14]

    Gao F, Gao Z, Shi X H, Yang Z J, Lin X, Xu H Y, Joannopoulos J D, Soljacic M, Chen H S, Lu L, Chong Y D, Zhang B L 2016 Nat. Commun. 7 11619Google Scholar

    [15]

    Cheng X J, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542Google Scholar

    [16]

    Dong J W, Chen X D, Zhu H Y, Wang Y, Zhang X 2017 Nat. Mater. 16 298Google Scholar

    [17]

    Gao F, Xue H R, Yang Z J, Lai K F, Yu Y, Lin X, Chong Y D, Shvets G, Zhang B L 2018 Nat. Phys. 14 140Google Scholar

    [18]

    Gao W L, Lawrence M, Yang B A, Liu F, Fang F Z, Beri B, Li J S, Zhang S 2015 Phys. Rev. Lett. 114 037402Google Scholar

    [19]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [20]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [21]

    Liang G, Chong Y 2013 Phys. Rev. Lett. 110 203904Google Scholar

    [22]

    Ma T, Khanikaev A B, Mousavi S H, Shvets G 2015 Phys. Rev. Lett. 114 127401Google Scholar

    [23]

    Ma T, Shvets G 2016 New J. Phys. 18 025012Google Scholar

    [24]

    Noh J, Huang S, Chen K P, Rechtsman M C 2018 Phys. Rev. Lett. 120 063902Google Scholar

    [25]

    Pasek M, Chong Y D 2014 Phys. Rev. B 89 075113Google Scholar

    [26]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [27]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [28]

    Xiao M, Lin Q, Fan S H 2016 Phys. Rev. Lett. 117 057401Google Scholar

    [29]

    Lu L, Joannopoulos J D, Soljacic M 2016 Nat. Phys. 12 626Google Scholar

    [30]

    Jin D, Christensen T, Soljačić M, Fang N X, Lu L, Zhang X 2017 Phys. Rev. Lett. 118 245301Google Scholar

    [31]

    Pan D, Yu R, Xu H, de Abajo F J G 2017 Nat. Commun. 8 1243Google Scholar

    [32]

    Jung M, Fan Z, Shvets G 2018 Phys. Rev. Lett. 121 086807Google Scholar

    [33]

    Gao Z, Gao F, Zhang Y M, Xu H Y, Luo Y, Zhang B L 2017 Adv. Mater. 29 1700018Google Scholar

    [34]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348Google Scholar

    [35]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [36]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [37]

    Yves S, Fleury R, Berthelot T, Fink M, Lemoult F, Lerosey G 2017 Nat. Commun. 8 16023Google Scholar

    [38]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343Google Scholar

    [39]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489Google Scholar

    [40]

    Ju L, Shi Z W, Nair N, Lv Y C, Jin C H, Velasco J, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J, Wang F 2015 Nature 520 650Google Scholar

    [41]

    Gao Z, Yang Z J, Gao F, Xue H R, Yang Y H, Dong J W, Zhang B L 2017 Phys. Rev. B 96 201402Google Scholar

    [42]

    Wu X X, Meng Y, Tian J X, Huang Y Z, Xiang H, Han D Z, Wen W J 2017 Nat. Commun. 8 1304Google Scholar

    [43]

    Yin X B, Ye Z L, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [44]

    Kitagawa T, Berg E, Rudner M, Demler E 2010 Phys. Rev. B 82 235114Google Scholar

    [45]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429Google Scholar

    [46]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005

    [47]

    Lohse M, Schweizer C, Price H M, Zilberberg O, Bloch I 2018 Nature 553 55Google Scholar

    [48]

    Zilberberg O, Huang S, Guglielmon J, Wang M H, Chen K P, Kraus Y E, Rechtsman M C 2018 Nature 553 59Google Scholar

    [49]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [50]

    Khanikaev A B, Mousavi S H, Shvets G, Kivshar Y S 2010 Phys. Rev. Lett. 105 126804Google Scholar

    [51]

    Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901Google Scholar

    [52]

    Ni X, Purtseladze D, Smirnova D A, Slobozhanyuk A, Alù A, Khanikaev A B 2018 Sci. Adv. 4 eaap8802Google Scholar

    [53]

    Yu N F, Wang Q J, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H, Capasso F 2010 Nat. Mater. 9 730Google Scholar

    [54]

    Karl N J, McKinney R W, Monnai Y, Mendis R, Mittleman D M 2015 Nat. Photonics 9 717Google Scholar

    [55]

    Ma J J, Karl N J, Bretin S, Ducournau G, Mittleman D M 2017 Nat. Commun. 8 729Google Scholar

    [56]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304Google Scholar

    [57]

    Chen H T, O'hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J 2008 Nat. Photonics 2 295Google Scholar

  • [1] Chen Yong-Qiang, Xu Guang-Yuan, Wang Jun, Fang Yu, Wu Xing-Zhi, Ding Ya-Qiong, Sun Yong. Electromagnetic diode based on asymmetric microwave photonic crystal. Acta Physica Sinica, 2022, 71(3): 034701. doi: 10.7498/aps.71.20211291
    [2] Ning Ren-Xia, Huang Wang, Wang Fei, Sun Jian, Jiao Zheng. Electromagnetic induction-like transparency in dual-band with dual-bright mode coupling. Acta Physica Sinica, 2022, 71(1): 014201. doi: 10.7498/aps.71.20211312
    [3] Dual band Analog - Electromagnetic Induced Transparency of Bright-Bright Mode Coupling on Metamaterial. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211312
    [4] Electromagnetic Diode Based on Asymmetric Microwave Photonic Crystal. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211291
    [5] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [6] Liu Fang, Li Yun-Xiang, Huang Yi-Dong. Nanolithography based on two-surface-plasmon-polariton-absorption. Acta Physica Sinica, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [7] Guo Chang, Zhang Yan. Super diffraction imaging with wave vector selective metasurface. Acta Physica Sinica, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [8] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [9] Wu Qing-Jun, Wu Fan, Sun Li-Bin, Hu Xiao-Lin, Ye Ming, Xu Yue, Shi Bin, Xie Hao, Xia Juan, Jiang Jian-Zhong, Zhang Dong-Xian. Ultrathin metallic subtractive color filters based on surface plasmon primitives. Acta Physica Sinica, 2014, 63(20): 207801. doi: 10.7498/aps.63.207801
    [10] Wang Wu-Song, Zhang Li-Wei, Ran Jia, Zhang Ye-Wen. Experimental studies of the surface plasmon polaritons waveguide filter in microwave band. Acta Physica Sinica, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [11] Ding Min, Xue Hui, Wu Bo, Sun Bing-Bing, Liu Zheng, Huang Zhi-Xiang, Wu Xian-Liang. The comparisons between two retrieve algorithms for metamaterials. Acta Physica Sinica, 2013, 62(4): 044218. doi: 10.7498/aps.62.044218
    [12] Huang Qian, Zhang De-Kun, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Research on reduction of parasitic absorption caused by surface plasmon polariton. Acta Physica Sinica, 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [13] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [14] Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou, Zheng Dong-Hao, Fan Yue-Nong, Xiong Xuan, Wang Xian. Design of a thin wide-band absorber based on metamaterials and resistance frequency selective surface. Acta Physica Sinica, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [15] Tong Jian-Bo, Huang Qian, Zhang Xiao-Dan, Zhang Cun-Shan, Zhao Ying. Effect of surface plasmon polariton of Ag nanoparticles on the photoluminescence property of up-conversion materials. Acta Physica Sinica, 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [16] Wu Xiang, Pei Zhi-Bin, Qu Shao-Bo, Xu Zhuo, Bai Peng, Wang Jia-Fu, Wang Xin-Hua, Zhou Hang. Design of metamaterial frequency selective surface with polarization selectivity. Acta Physica Sinica, 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [17] Zheng Jun-Juan, Sun Gang. Transmission properties of the system of dielectric spheres periodically mounted in a metal slab. Acta Physica Sinica, 2010, 59(6): 4008-4013. doi: 10.7498/aps.59.4008
    [18] Song Guo-Feng, Wang Wei-Min, Cai Li-Kang, Guo Bao-Shan, Wang Qing, Xu Yun, Wei Xin, Liu Yun-Tao. Sub-wavelength beam lasers with surface plasmon structures. Acta Physica Sinica, 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [19] Fu Fei-Ya, Chen Wei, Zhou Wen-Jun, Liu An-Jin, Xing Ming-Xin, Wang Yu-Fei, Zheng Wan-Hua. Electromagnetic resonance in nanosandwich photonic metamaterial. Acta Physica Sinica, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
    [20] Zheng Jun-Juan, Sun Gang. Optical properties of surface plasmons induced by the plan of a periodically arranged dielectric spheres on the metal slab. Acta Physica Sinica, 2005, 54(11): 5210-5217. doi: 10.7498/aps.54.5210
Metrics
  • Abstract views:  12441
  • PDF Downloads:  601
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2019
  • Accepted Date:  18 August 2019
  • Available Online:  01 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回