Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental optimal design of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor and red upconversion luminescence properties

Zhao Yue Yang Fan Sun Jia-Shi Li Xiang-Ping Zhang Jin-Su Zhang Xi-Zhen Xu Sai Cheng Li-Hong Chen Bao-Jiu

Citation:

Experimental optimal design of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor and red upconversion luminescence properties

Zhao Yue, Yang Fan, Sun Jia-Shi, Li Xiang-Ping, Zhang Jin-Su, Zhang Xi-Zhen, Xu Sai, Cheng Li-Hong, Chen Bao-Jiu
PDF
HTML
Get Citation
  • In order to obtain the Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 up-conversion phosphor material with maximum red luminous intensity, three steps are adopted as follows. Firstly, the uniform design in the experimental optimal design is used to find the reasonable doping concentration of Er3+/Yb3+. Secondly, according to the quadratic general rotary unitized design, the regression equation of the red luminescence intensity of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 under 980 nm and 1550 nm excitations is established. Finally, the optimal solution of the regression equation is obtained by genetic algorithm. The Ba5Gd8Zn4O21:Er3+/Yb3+ phosphors are prepared by a high-temperature solid-phase method. The crystal structure for each of the prepared phosphors is analyzed by X-ray diffraction, and it is confirmed that the prepared phosphor samples of Ba5Gd8Zn4O21 are all in pure phase. Using the 980 nm laser as an excitation source, the relationship between the red up-conversion luminescence intensity of the optimal sample and the operating current of the laser is studied. It is found that the red luminescence is emitted through a double-photon process by the formula fitting analysis. Using the 1550 nm laser as the excitation source, it is found that red luminescence is emitted through a three-photon process. The up-conversion emission spectrum of the optimal sample with respect to temperature is measured and discussed, and it is found that the red up-conversion luminescence intensity of the sample is weakened as the temperature increases. The optimal samples are compared with the commercial phosphors of NaYF4:Er3+/Yb3+ under the 980 nm and 1550 nm excitation respectively, the luminescence intensity of the optimal sample is much stronger than that of the commercial phosphor of NaYF4:Er3+/Yb3+. Moreover, under the same power density excitation, the red up conversion luminescence intensity of the optimal sample at 980 nm is stronger than that at 1550 nm.
      Corresponding author: Sun Jia-Shi, sunjs@dlmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774042, 11704056), the High-level Personnel in Dalian Innovation Support Program, China (Grant Nos. 2016RQ037, 2017RQ070), the Open Fund of the State Key Laboratory of Integrated Optoelectronics Granted, China (Grant Nos. IOSKL2019KF06, OSKL2018KF02), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3132019186, 3132019338, 3132019035), and the Postgraduate Education and Teaching Reform Project of Dalian Maritime University, China (Grant Nos. YJG2019209, YJG2019210)
    [1]

    孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖 2015 物理学报 64 243301Google Scholar

    Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301Google Scholar

    [2]

    Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Mao C B, Xu S K 2009 ACS Nano 3 1580Google Scholar

    [3]

    Gao G J, Busko D, Joseph R, Howard I A, Turshatov A, Richards B S 2018 ACS Appl. Mater. Interfaces 10 39851Google Scholar

    [4]

    Homann C, Krukewitt L, Frenzel F, Grauel B, Wurth C, Resch-Genger U, Haase M 2018 Angew. Chem. Int. Ed. Engl. 57 8765Google Scholar

    [5]

    Zhang Y Q, Xu S, Li X P, Zhang J S, Sun J S, Tong L L, Zhong H, Xia H P, Hua R N, Chen B J 2018 Sensor. Actuat. B: Chem. 257 829Google Scholar

    [6]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244Google Scholar

    [7]

    Wang B, Cheng L H, Zhong H Y, Sun J S, Tian Y, Zhang X Q, Chen B J 2009 Opt. Mater. 31 1658Google Scholar

    [8]

    Tian B N, Chen B J, Tian Y, Li X P, Zhang J S, Sun J S, Zhong H Y, Cheng L H, Fu S B, Zhong H, Wang Y Z, Zhang X Q, Xia H P, Hu R N 2013 J. Mater. Chem. C 1 2338Google Scholar

    [9]

    Page R H, Schaffers K I, Waide P A, Tassano J B, Bischel W K 1998 J. Opt. Soc. Am. B 15 996Google Scholar

    [10]

    田碧凝 2013 硕士学位论文 (大连: 大连海事大学)

    Tian B N 2013 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [11]

    Li G Y, Zhou T M 2017 Nanosci. Nanotech. Lett. 9 1919Google Scholar

    [12]

    Shi R, Li B Q, Liu C M, Liang H B 2016 J. Phys. Chem. C 120 19365Google Scholar

    [13]

    Janani K, Ramasubramanian S, Thangavel R, Thiyagarajan P 2019 Solid State Sci. 91 119Google Scholar

    [14]

    Liu Y X, Zhou W, Chen L, Lin Y, Chu X Y, Zheng T Q, Wan S L 2019 Fuel 253 1545Google Scholar

    [15]

    Chen C, Li M, Wang C X, Fu S H, Yan W J, Chen C S 2018 Fiber. Polym. 19 1255Google Scholar

    [16]

    任露泉 2009 试验设计及其优化 (北京: 科学出版社) 第174—190页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Chemical Industry Press) pp174–190 (in Chinese)

    [17]

    孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys. Sin. 66 100201Google Scholar

    [18]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng.-En. 22 862Google Scholar

    [19]

    Tan G Z, Zhou D M, Jiang B, Dioubate M I 2008 J. Cent. South Univ. T. 15 845Google Scholar

    [20]

    杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭 2007 物理学报 56 546Google Scholar

    Yang Z P, Liu Y F, Wang L W, Yu Q M, Xiong Z J, Xu X L 2007 Acta Phys. Sin. 56 546Google Scholar

    [21]

    王欣 2018 硕士学位论文 (大连: 大连海事大学)

    Wang X 2018 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [22]

    Suo H, Guo C F, Wang W B, Li T, Duan C K, Yin M 2016 Dalton T. 45 2629Google Scholar

    [23]

    Li H Y, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S, Yi S S 2013 Inorg. Chem. 52 11210Google Scholar

    [24]

    Van U 1967 J. Electrochem. Soc. 114 1048Google Scholar

  • 图 1  Er3+/Yb3+共掺Ba5Gd8Zn4O21在1550 nm激光激发下的上转换发射光谱(插图为1号样品与最优样品的发光强度对比)

    Figure 1.  Up-conversion emission spectra of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor under 1550 nm laser excitation. Inset picture shows the luminescence intensity of No. 1 sample and the optimal sample for comparison.

    图 2  Er3+/Yb3+共掺Ba5Gd8Zn4O21在980 nm激光激发下的上转换发射光谱(插图为3号样品与最优样品的发光强度对比)

    Figure 2.  Up-conversion emission spectra of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor under 980 nm laser excitation. Inset picture shows the luminescence intensity of No. 3 sample and the optimal sample for comparison.

    图 3  样品的XRD与标准卡片JCPDS No.51-1686图样

    Figure 3.  XRD patterns of samples, and standard peaks of Ba8Gd5Zn4O21 (JCPDS No.51-1686) are included for comparison.

    图 4  上转换发光强度积分与激光器工作电流的依赖关系

    Figure 4.  Dependence of the integrated intensity of up-conversion luminescence on laser working current.

    图 5  最优样品在(a) 980 nm与(b) 1550 nm激光激发下的红色上转换发光强度随温度的变化

    Figure 5.  Dependence of red up-conversion luminescence intensity on temperature under (a) 980 nm and (b) 1550 nm excitation for optimal samples.

    图 6  在(a), (b) 980 nm和(c), (d) 1550 nm激光激发下最优样品与NaYF4商品粉末发光强度的比较

    Figure 6.  Dependence of red up-conversion luminescence intensity compared with commercial phosphor of NaYF4 under (a), (b) 980 nm and (c), (d) 1550 nm excitation for optimal samples.

    图 7  在980 nm和1550 nm激光激发下最优样品与NaYF4商品粉末发光强度的倍数比

    Figure 7.  The Multiple ratio of red up-conversion luminescence intensity compared with commercial phosphor of NaYF4 under 980 nm and 1550 nm excitation for optimal samples.

    图 8  相同功率密度下最优样品的红光上转换发光强度比较

    Figure 8.  Comparison of red up-conversion luminescence intensity of optimal samples at the same power density.

    表 1  均匀试验设计

    Table 1.  Uniform experimental design.

    因素试验
    序号
    x1 (Er3+)/
    mol%
    x2 (Yb3+)/
    mol%
    y1550 nmy980 nm
    11(1)4(5.125)3328.262033.4
    22(2)8(10.625)11605.2101937.9
    33(3)3(3.75)32949.390471.5
    44(4)7(9.25)38447.299822.8
    55(5)2(2.375)79416.969237.5
    66(6)6(7.875)145038.5123959.0
    77(7)1(1)132225.638588.2
    88(8)5(6.5)155258.0112564.1
    99(9)9(12)105986.775933.5
    DownLoad: CSV

    表 2  自然因素水平编码表

    Table 2.  Natural factors level codes.

    zj(xj)z1(Er3+)/mol%z2(Yb3+)/mol%
    z2j(2)99
    z0j + ${\varDelta _j} $(1)8.26808.2680
    z0j(0)6.56.5
    z0j – $ {\varDelta _j}$(–1)4.73204.7320
    z1j(–2)44
    ${\varDelta _j} = \dfrac{{{z_{2j}} - {z_{1j}}}}{{2r}}$1.76801.7680
    ${x_j} = \dfrac{{{z_j} - {z_{0j}}}}{{{\varDelta _j}}}$${x_1} = \dfrac{{{z_1} - {\rm{6}}.{\rm{5}}}}{{{\rm{1}}.{\rm{7680}}}}$${x_2} = \dfrac{{{z_2} - {\rm{6}}.{\rm{5}}}}{{{\rm{1}}.{\rm{7680}}}}$
    DownLoad: CSV

    表 3  二次通用旋转组合设计的试验方案及红光发光强度

    Table 3.  Red luminescence intensity and experiment scheme of quadratic general rotary unitized design.

    序号x0x1x2x1x2x12x22y1550 nmy980 nm
    111111112944376365
    211–1–11112420154268
    31–11–11112044089291
    41–1–111110041065430
    511.414002012774467758
    61–1.414002010162373300
    7101.41400211206782410
    810–1.41400210950353292
    910000012022986752
    1010000012399380120
    1110000012417682245
    1210000011878096762
    1310000010882986738
    DownLoad: CSV

    表 4  红光的T-检验及F-检验方差分析

    Table 4.  T-test and F-test with analysis of variance of red light

    方差来源偏差平方和1偏差平方和2自由度t1统计量及F1t2统计量及F2显著性水平α1显著性水平α2显著性1显著性2
    x0142.6130.190.0010.001********
    x112.301.030.10.4****
    x210.952.800.40.02****
    x1x211.180.140.40.9*不显著
    x1210.293.050.80.02不显著***
    x2211.113.600.40.02****
    回归991488682.61960893448512.0318.770.010.01********
    剩余115427203146280989.87
    失拟43457130.8715074730.2631.110.370.010.01********
    误差156531329.6164236197.24
    总和1106915886210717443812
    注: ****极高显著水平(α ≤ 0.01); ***高显著性水平(α ≤ 0.1); **显著水平(α ≤ 0.25); *较显著水平(α ≤ 0.4).
    DownLoad: CSV
  • [1]

    孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖 2015 物理学报 64 243301Google Scholar

    Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301Google Scholar

    [2]

    Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Mao C B, Xu S K 2009 ACS Nano 3 1580Google Scholar

    [3]

    Gao G J, Busko D, Joseph R, Howard I A, Turshatov A, Richards B S 2018 ACS Appl. Mater. Interfaces 10 39851Google Scholar

    [4]

    Homann C, Krukewitt L, Frenzel F, Grauel B, Wurth C, Resch-Genger U, Haase M 2018 Angew. Chem. Int. Ed. Engl. 57 8765Google Scholar

    [5]

    Zhang Y Q, Xu S, Li X P, Zhang J S, Sun J S, Tong L L, Zhong H, Xia H P, Hua R N, Chen B J 2018 Sensor. Actuat. B: Chem. 257 829Google Scholar

    [6]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244Google Scholar

    [7]

    Wang B, Cheng L H, Zhong H Y, Sun J S, Tian Y, Zhang X Q, Chen B J 2009 Opt. Mater. 31 1658Google Scholar

    [8]

    Tian B N, Chen B J, Tian Y, Li X P, Zhang J S, Sun J S, Zhong H Y, Cheng L H, Fu S B, Zhong H, Wang Y Z, Zhang X Q, Xia H P, Hu R N 2013 J. Mater. Chem. C 1 2338Google Scholar

    [9]

    Page R H, Schaffers K I, Waide P A, Tassano J B, Bischel W K 1998 J. Opt. Soc. Am. B 15 996Google Scholar

    [10]

    田碧凝 2013 硕士学位论文 (大连: 大连海事大学)

    Tian B N 2013 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [11]

    Li G Y, Zhou T M 2017 Nanosci. Nanotech. Lett. 9 1919Google Scholar

    [12]

    Shi R, Li B Q, Liu C M, Liang H B 2016 J. Phys. Chem. C 120 19365Google Scholar

    [13]

    Janani K, Ramasubramanian S, Thangavel R, Thiyagarajan P 2019 Solid State Sci. 91 119Google Scholar

    [14]

    Liu Y X, Zhou W, Chen L, Lin Y, Chu X Y, Zheng T Q, Wan S L 2019 Fuel 253 1545Google Scholar

    [15]

    Chen C, Li M, Wang C X, Fu S H, Yan W J, Chen C S 2018 Fiber. Polym. 19 1255Google Scholar

    [16]

    任露泉 2009 试验设计及其优化 (北京: 科学出版社) 第174—190页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Chemical Industry Press) pp174–190 (in Chinese)

    [17]

    孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys. Sin. 66 100201Google Scholar

    [18]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng.-En. 22 862Google Scholar

    [19]

    Tan G Z, Zhou D M, Jiang B, Dioubate M I 2008 J. Cent. South Univ. T. 15 845Google Scholar

    [20]

    杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭 2007 物理学报 56 546Google Scholar

    Yang Z P, Liu Y F, Wang L W, Yu Q M, Xiong Z J, Xu X L 2007 Acta Phys. Sin. 56 546Google Scholar

    [21]

    王欣 2018 硕士学位论文 (大连: 大连海事大学)

    Wang X 2018 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [22]

    Suo H, Guo C F, Wang W B, Li T, Duan C K, Yin M 2016 Dalton T. 45 2629Google Scholar

    [23]

    Li H Y, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S, Yi S S 2013 Inorg. Chem. 52 11210Google Scholar

    [24]

    Van U 1967 J. Electrochem. Soc. 114 1048Google Scholar

  • [1] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu. Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design. Acta Physica Sinica, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [4] Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei. Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures. Acta Physica Sinica, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [5] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [6] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [7] Sun Jia-Shi, Li Xiang-Ping, Wu Jin-Lei, Li Shu-Wei, Shi Lin-Lin, Xu Sai, Zhang Jin-Su, Cheng Li-Hong, Chen Bao-Jiu. Experimental optimal design on BaY2ZnO5: Tm3+/Yb3+ phosphor and its up-conversion luminescence property. Acta Physica Sinica, 2017, 66(10): 100201. doi: 10.7498/aps.66.100201
    [8] Gao Wei, Dong Jun, Wang Rui-Bo, Wang Zhao-Jin, Zheng Hai-Rong. Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals. Acta Physica Sinica, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [9] Yang Jian-Zhi, Qiu Jian-Bei, Yang Zheng-Wen, Song Zhi-Guo, Yang Yong, Zhou Da-Cheng. Preparation and upconversion luminescence properties of Ba5SiO4Cl6: Yb3+, Er3+, Li+ phosphors. Acta Physica Sinica, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [10] Sun Jia-Shi, Li Shu-Wei, Shi Lin-Lin, Zhou Tian-Min, Li Xiang-Ping, Zhang Jin-Su, Cheng Li-Hong, Chen Bao-Jiu. Experimental optimal design of the Er3+/Yb3+ codoped BaGd2ZnO5 phosphor and its upconversion luminescence properties. Acta Physica Sinica, 2015, 64(24): 243301. doi: 10.7498/aps.64.243301
    [11] Pan Cheng-Long, Liu Hong-Li, Guo Yun, Jing Shu, Sun Jing, Zhou He-Feng, Wang Hua. Synthesis and upconversion luminescent properties of BaMgF4:Er3+, Yb3+ nanocrystals. Acta Physica Sinica, 2014, 63(15): 154211. doi: 10.7498/aps.63.154211
    [12] Zhai Zi-Hui, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Cheng Li-Hong, Zhong Hai-Yang, Li Jing-Jing, Chen Bao-Jiu. Up-conversion luminescence in Tm3+/Yb3+ Co-doped NaY(MoO4)2 phosphors by optimal design of experiments. Acta Physica Sinica, 2013, 62(20): 203301. doi: 10.7498/aps.62.203301
    [13] Guo Lin-Na, Wang Yu-Hua. Upconversion luminescence properties of Y2SiO5: Er3+ ,Yb3+ ,Tm3+ synthesized by co-precipitation method. Acta Physica Sinica, 2011, 60(2): 027803. doi: 10.7498/aps.60.027803
    [14] Liu Li-Sha, Lü Shu-Chen, Sun Jiang-Ting. Spectroscopic properties and up-conversion luminescence Er3+/Yb3+ co-doped TeO2-WO3-Bi2O3 glass. Acta Physica Sinica, 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [15] Xiao Si-Guo, Yang Xiao-Liang, Ding Jian-Wen. Luminescence properties and upconversion of Er3+ doped and Er3+/Yb3+ co-doped LaF3 particles. Acta Physica Sinica, 2009, 58(6): 3812-3820. doi: 10.7498/aps.58.3812
    [16] Luo Jian-Qiao, Sun Dun-Lu, Zhang Qing-Li, Liu Wen-Peng, Gu Chang-Jiang, Wu Lu-Sheng, Yin Shao-Tang. Up-conversion luminescence in Er3+/Yb3+-codoped Gd3Sc2Ga3O12 laser crystals. Acta Physica Sinica, 2008, 57(12): 7712-7716. doi: 10.7498/aps.57.7712
    [17] Ding Qing-Lei, Xiao Si-Guo, Zhang Xiang-Hua, Xia Yan-Qin, Liu Zheng-Wei. The upconversion luminescent of Er3+/Yb3+ co-doped ZrO2-Al2O3 powders. Acta Physica Sinica, 2006, 55(10): 5140-5144. doi: 10.7498/aps.55.5140
    [18] Yang Zhong-Min, Zhang Qin-Yuan, Liu Yue-Hui, Jiang Zhong-Hong. Mechanism of the enhanced upconversion emissions in Yb3+/Er3+-codoped germanate-tellurite glasses. Acta Physica Sinica, 2005, 54(5): 2013-2018. doi: 10.7498/aps.54.2013
    [19] Wu Zhao-Hui, Song Feng, Liu Shu-Jing, Qin Bin, Su Jing, Tian Jian-Guo, Zhang Guang-Yin. Influence of upconversion effect on Er3+, Yb3+co-doped phosphate glass lasers. Acta Physica Sinica, 2005, 54(12): 5637-5641. doi: 10.7498/aps.54.5637
    [20] Wang Ji-You, Guo Wei-Lin, Lin Zhi-Ming, Song Guang-Zhi, Zhao Li-Juan, Zhang Cun-Zhou, Zhang Guang-Yin. . Acta Physica Sinica, 2002, 51(8): 1861-1864. doi: 10.7498/aps.51.1861
Metrics
  • Abstract views:  5967
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2019
  • Accepted Date:  29 August 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回