Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature-dependent photoluminescence in hybrid iodine-based perovskites film

Jiang Beng Chen Si-Liang Cui Xiao-Lei Hu Zi-Ting Li Yue Zhang Xiao-Zheng Wu Kang-Jing Wang Wen-Zhen Jiang Zui-Min Hong Feng Ma Zhong-Quan Zhao Lei Xu Fei Xu Run Zhan Yi-Qiang

Citation:

Temperature-dependent photoluminescence in hybrid iodine-based perovskites film

Jiang Beng, Chen Si-Liang, Cui Xiao-Lei, Hu Zi-Ting, Li Yue, Zhang Xiao-Zheng, Wu Kang-Jing, Wang Wen-Zhen, Jiang Zui-Min, Hong Feng, Ma Zhong-Quan, Zhao Lei, Xu Fei, Xu Run, Zhan Yi-Qiang
PDF
HTML
Get Citation
  • Lead halide perovskite has attracted much attention due to its high absorption coefficient, long carrier diffusion length, low binding energy, and low cost. The stability of intrinsic crystal structure in I-based perovskite can be theoretically estimated by calculating cubic structures factor and octahedral factor. Experimental methods to solve the stability of structure in I-based perovskite could be mainly to either incorporate anions (e.g. Cl, Br) or mix cations (e.g. Cs+) into I-based perovskite matrix. Moreover, incorporating Br into I-based perovskite leads its band gap to widen, which might be used as a top-cell material to tandem solar cell. However, in order to understand photo-physics process of anion-mixed and/or cation-mixed perovskites, it is essential to further investigate the optical properties such as absorption spectrum, photoluminescence (PL), temperature-dependent PL (TPL) behavior, etc. In this work, anion-mixed and/or cation-mixed perovskite thin films with high quality crystallization and (110) prereferral orientation are synthesized by one-step solution method. All mixed perovskite films are characterized by using X-ray diffraction (Rigaku D MAX-3C, Cu-Kα, λ = 1.54050 Å) and X-ray photoelectron spectroscopy (XPS) (Thermo Scientific Escalab 250Xi). A set of strong peaks of the mixed perovskite films at 14.12° and 28.48°, is assigned to (110) and (220) lattice plane of orthorhombic crystal structure of I-based perovskite, due to preferred orientation. The Pb 4f and I 3d doublet peaks, corresponding to Pb+2 and I states, are observed in XPS spectra. It should be noted that in the absence of other valence states of Pb and I component at lower/upper binding energy, the chemical element composition ratio of Pb+2 and I are close to stoichiometric proportion. For optical absorptionspectra, the optical bandgaps of the perovskite films increase with doping concentration of Br increasing. For TPL, the perovskite films with x = 0 and x = 0.05 show abnormal red-shifts in a temperature range from 10 to 100 K. The following blue shifts in a temperature range from 125 to 350 K emerge, which is mainly attributed to band gap widening. However, incorporating more Br into I-based perovskite leads the TPL spectra to monotonically blue-shift. A linear relationship between the TPL peak position and the doping concentration of Br ions is observed at the same temperatures. This indicates that the Br anion in I-based perovskite plays a crucial role in determining the optical properties. The low-temperature and high-temperature (HT) excitonic binding energy at x = 0 are 186 meV and 37.5 meV, respectively. The HT excitonic binding energy first increases and then decreases with the Br concentration in I-based perovskite film increasing. The minimal variation of TPL peak position and FWHM (full width at half maximum) at x = 0.0333 are 13 nm and (25.8 ± 0.5) meV, respectively, suggesting higher temperature stability in optical property. This should contribute to understanding the relationship between temperature-dependent electrical and optoelectronic performance for hybrid mixed perovskite materials and devices.
      Corresponding author: Xu Fei, feixu@staff.shu.edu.cn ; Xu Run, runxu@staff.shu.edu.cn ; Zhan Yi-Qiang, yqzhan@fudan.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1409600), the National Natural Science Foundation of China (Grant Nos. 61874027, 11527805, 61874070), and State Key Laboratory of Surface Physics of Fudan University, China (Grant No. KF2018_08)
    [1]

    Robert S F 2014 Science 344 458Google Scholar

    [2]

    Hodes G, Cahen D 2014 Nat. Photon. 8 87Google Scholar

    [3]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [4]

    Zuo C, Bolink H J, Han H, Huang J, Cahen D, Ding L 2016 Adv. Sci. (Weinh) 3 1500324Google Scholar

    [5]

    Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu X H 2019 Adv. Mater. 31 1806736

    [6]

    Kumar J, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [7]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [8]

    Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J 2016 Nat. Photonics 10 333Google Scholar

    [9]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [10]

    Yuan Y, Xu R, Xu H, Hong F, Xu F, Wang L 2015 Chin. Phys. B 24 116302Google Scholar

    [11]

    Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kiessling J, Kohler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar

    [12]

    Meloni S, Moehl T, Tress W, Franckevicius M, Saliba M, Lee Y H, Gao P, Nazeeruddin M K, Zakeeruddin S M, Rothlisberger U, Graetzel M 2016 Nat. Commun. 7 10334Google Scholar

    [13]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [14]

    Chen Q, De Marco N, Yang Y, Song T, Chen C, Zhao H, Hong Z, Zhou H, Yang Y 2015 Nano Today 10 355Google Scholar

    [15]

    Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar

    [16]

    Saliba M, Matsui T, Seo J Y, Domanski K, CorreaBaena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [17]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M 2016 Science 354 206Google Scholar

    [18]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [19]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [20]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar

    [21]

    Xu Q, Shao W, Zhang X, Liu J, Ouyang X, Tang X, Jia W 2019 J. Alloys Compd. 792 185

    [22]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar

    [23]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nature Phys. 11 582Google Scholar

    [24]

    Sestu N, Cadelano M, Sarritzu V, Chen F, Marongiu D, Piras R, Mainas M, Quochi F, Saba M, Mura A, Bongiovanni G 2015 J. Phys. Chem. Lett. 6 4566Google Scholar

    [25]

    Stadler W, Hofmann D M, Alt H C, Muschik T, Meyer B K, Weigel E, Müller-Vogt G, Salk M, Rupp E, Benz K W 1995 Phys. Rev. B 51 10619Google Scholar

    [26]

    Li T, Lozykowski H J, Reno J L 1992 Phys. Rev. B 46 6961Google Scholar

    [27]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [28]

    Cao R, Xu F, Zhu J, Ge S, Wang W, Xu H, Xu R, Wu Y, Ma Z, Hong F, Jiang Z 2016 Adv. Energy Mater. 6 1600814Google Scholar

    [29]

    Ahmad Z, Najeeb M A, Shakoor R A, Alashraf A, Muhtaseb S A, Soliman A, Nazeeruddin M K 2017 Sci. Rep. 7 15406Google Scholar

    [30]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第278−310页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp278−310

    [31]

    Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214Google Scholar

    [32]

    Böer K W, Pohl U W 2014 Semiconductor Physics (Cham: Springer International Publishing) pp1−29

    [33]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [34]

    Wang M, Fei G T, Zhang Y G, Kong M G, Zhang L D 2007 Adv. Mater. 19 4491Google Scholar

    [35]

    ElShazly A A, ElNaby M M H, Kenawy M A, ElNahass M M, ElShair H T, Ebrahim A M 1985 Appl. Phys. A 36 51Google Scholar

    [36]

    Wright A D, Verdi C, Milot R L, Eperon G E, PérezOsorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755Google Scholar

    [37]

    Feng J, JianTing J, Chao X, Wang Y M, He S N, Zhang L, Yang Z R, Yan F, Zhang Q M 2019 Chin. Phys. B 28 076102Google Scholar

    [38]

    Ruf F, Aygüler M F, Giesbrecht N, Rendenbach B, Magin A, Docampo P, Kalt H, Hetterich M 2019 APL Mater. 7 031113Google Scholar

  • 图 1  (a) 阴离子混合型钙钛矿MAPb(BrxI1–x)3的XRD谱; (b) (110)和(220)衍射峰强和晶面间距d随Br比例x的变化; (c) 不同Br比例的钙钛矿薄膜中Pb和I元素XPS谱

    Figure 1.  (a) The XRD of hybrid anion mixed perovskite MAPb(BrxI1–x)3; (b) the diffraction intensity and plane distance obtained at different molar ratios of Br in lattice plane of (110) and (220); (c) the XPS spectra of Pb and I element inperovskite film for different Brratios.

    图 2  室温下的阴离子混合型钙钛矿$MA{\rm{Pb(B}}{{\rm{r}}_x}{{\rm{I}}_{1 - x}}{)_3}$ (a)吸收系数与入射光子能量的关系; (b) Tauc方差分析光学带隙; (c) 由(1)式拟合带隙Eg的变化

    Figure 2.  Hybrid anion mixed perovskite $MA{\rm{Pb(B}}{{\rm{r}}_x}{{\rm{I}}_{1 - x}}{)_3}$ in room temperature: (a) Absorption coefficient change with incident photon energy; (b) the optical bandgap obtained by Tauc equation; (c) the change of Eg using Eq. (1) fitting.

    图 3  室温下阴离子混合型钙钛矿MAPb(BrxI1–x)3 PL图谱 (a)归一化PL谱; (b)峰位和峰强与Br比例x的关系

    Figure 3.  Photoluminescence of hybrid anion mixed perovskite MAPb(BrxI1–x)3 at room temperature: (a) The photoluminescence spectra; (b) the change of peak position and intensity.

    图 4  阴离子混合型钙钛矿MAPb(BrxI1–x)3可见波段变温PL谱 (a) PL谱; (b) PL投影图; (c)通过Arrhenius拟合提取激子结合能; (d) PL的强度、峰位和半高宽

    Figure 4.  Temperature-dependent photoluminescence of hybrid anion mixed perovskites MAPb(BrxI1–x)3 in visible region: (a) The photoluminescence spectra; (b) the projection mapping of photoluminescence; (c) the excitonic binding energy extract by Arrhenius equation fitting; (d) the intensity, peak position and full width at half maximum of photoluminescence.

    图 5  混合阳离子(Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 薄膜 (a) PL谱; (b)归一化变温PL投影图; (c) 可见波段发光峰位和强度随温度的变化

    Figure 5.  Photoluminescence dependent-temperature of mix cation (Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 measured at temperature range from 10 K to 350 K: (a) The photoluminescence spectra; (b) the projection mapping of normalize photoluminescence; (c) the peak position and intensity evolution with temperature.

    表 1  样品化学式与XPS结果对比

    Table 1.  Chemical formula of sample compare with XPS.

    Pb/I原子比样品化学式XPS测得成分
    26.42/73.58 $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9833}}{\rm{B}}{{\rm{r}}_{0.0167}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.97}}{\rm{B}}{{\rm{r}}_{0.03}}} \right)_3}$
    26.84/73.16$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9667}}{\rm{B}}{{\rm{r}}_{0.0333}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9467}}{\rm{B}}{{\rm{r}}_{0.0533}}} \right)_3}$
    27/73$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9333}}{\rm{B}}{{\rm{r}}_{0.0667}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9367}}{\rm{B}}{{\rm{r}}_{0.0633}}} \right)_3}$
    27.55/72.45$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9}}{\rm{B}}{{\rm{r}}_{0.1}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9133}}{\rm{B}}{{\rm{r}}_{0.0667}}} \right)_3}$
    DownLoad: CSV
  • [1]

    Robert S F 2014 Science 344 458Google Scholar

    [2]

    Hodes G, Cahen D 2014 Nat. Photon. 8 87Google Scholar

    [3]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [4]

    Zuo C, Bolink H J, Han H, Huang J, Cahen D, Ding L 2016 Adv. Sci. (Weinh) 3 1500324Google Scholar

    [5]

    Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu X H 2019 Adv. Mater. 31 1806736

    [6]

    Kumar J, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [7]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [8]

    Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J 2016 Nat. Photonics 10 333Google Scholar

    [9]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [10]

    Yuan Y, Xu R, Xu H, Hong F, Xu F, Wang L 2015 Chin. Phys. B 24 116302Google Scholar

    [11]

    Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kiessling J, Kohler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar

    [12]

    Meloni S, Moehl T, Tress W, Franckevicius M, Saliba M, Lee Y H, Gao P, Nazeeruddin M K, Zakeeruddin S M, Rothlisberger U, Graetzel M 2016 Nat. Commun. 7 10334Google Scholar

    [13]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [14]

    Chen Q, De Marco N, Yang Y, Song T, Chen C, Zhao H, Hong Z, Zhou H, Yang Y 2015 Nano Today 10 355Google Scholar

    [15]

    Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar

    [16]

    Saliba M, Matsui T, Seo J Y, Domanski K, CorreaBaena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [17]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M 2016 Science 354 206Google Scholar

    [18]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [19]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [20]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar

    [21]

    Xu Q, Shao W, Zhang X, Liu J, Ouyang X, Tang X, Jia W 2019 J. Alloys Compd. 792 185

    [22]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar

    [23]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nature Phys. 11 582Google Scholar

    [24]

    Sestu N, Cadelano M, Sarritzu V, Chen F, Marongiu D, Piras R, Mainas M, Quochi F, Saba M, Mura A, Bongiovanni G 2015 J. Phys. Chem. Lett. 6 4566Google Scholar

    [25]

    Stadler W, Hofmann D M, Alt H C, Muschik T, Meyer B K, Weigel E, Müller-Vogt G, Salk M, Rupp E, Benz K W 1995 Phys. Rev. B 51 10619Google Scholar

    [26]

    Li T, Lozykowski H J, Reno J L 1992 Phys. Rev. B 46 6961Google Scholar

    [27]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [28]

    Cao R, Xu F, Zhu J, Ge S, Wang W, Xu H, Xu R, Wu Y, Ma Z, Hong F, Jiang Z 2016 Adv. Energy Mater. 6 1600814Google Scholar

    [29]

    Ahmad Z, Najeeb M A, Shakoor R A, Alashraf A, Muhtaseb S A, Soliman A, Nazeeruddin M K 2017 Sci. Rep. 7 15406Google Scholar

    [30]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第278−310页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp278−310

    [31]

    Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214Google Scholar

    [32]

    Böer K W, Pohl U W 2014 Semiconductor Physics (Cham: Springer International Publishing) pp1−29

    [33]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [34]

    Wang M, Fei G T, Zhang Y G, Kong M G, Zhang L D 2007 Adv. Mater. 19 4491Google Scholar

    [35]

    ElShazly A A, ElNaby M M H, Kenawy M A, ElNahass M M, ElShair H T, Ebrahim A M 1985 Appl. Phys. A 36 51Google Scholar

    [36]

    Wright A D, Verdi C, Milot R L, Eperon G E, PérezOsorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755Google Scholar

    [37]

    Feng J, JianTing J, Chao X, Wang Y M, He S N, Zhang L, Yang Z R, Yan F, Zhang Q M 2019 Chin. Phys. B 28 076102Google Scholar

    [38]

    Ruf F, Aygüler M F, Giesbrecht N, Rendenbach B, Magin A, Docampo P, Kalt H, Hetterich M 2019 APL Mater. 7 031113Google Scholar

  • [1] Lü Xing, Fu Rong-Guo, Chang Ben-Kang, Guo Xin, Wang Zhi. Improvement and structure optimization of transmission-mode GaAs photocathode performance. Acta Physica Sinica, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [2] Zeng Fan-Ju, Tan Yong-Qian, Hu Wei, Tang Xiao-Sheng, Zhang Xiao-Mei, Yin Hai-Feng. Synthesis and optical properties of ultra-small Tin doped CsPbBr3 blue luminescence quantum dots. Acta Physica Sinica, 2022, 71(4): 047401. doi: 10.7498/aps.71.20211895
    [3] Sui Guo-Min, Yan Gui-Jun, Yang Guang, Zhang Bao, Feng Ya-Qing. Theoretical investigation on structure and optoelectronic performance of two-dimensional fluorbenzidine perovskites. Acta Physica Sinica, 2022, 71(20): 208801. doi: 10.7498/aps.71.20220802
    [4] Synthesis and optical properties of ultra-small Tin doped CsPbBr3 blue luminescence quantum dots. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211895
    [5] Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng. First principles study of structure and property of Nb5+-doped SrTiO3. Acta Physica Sinica, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [6] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [7] Jiang Yan, Liu Gui-Li. Influences of shear deformation on electronic structure and optical properties of B, N doped carbon nanotube superlattices. Acta Physica Sinica, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [8] Liu Hai-Yong, Zhang Min, Lin Guo-Qiang, Han Ke-Chang, Zhang Lin. Structure and optical property of Cr-O films deposited by pulsed bias arc ion plating. Acta Physica Sinica, 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [9] Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures. Acta Physica Sinica, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [10] Jia Xiao-Qin, He Zhi-Bing, Niu Zhon-Cai, He Xiao-Shan, Wei Jian-Jun, Li Rui, Du Kai. Influnce of heat treatment on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [11] Zhang Rui-Shuo, Liu Yong, Teng Fan, Song Chen-Lu, Han Gao-Rong. Electronic and optical properties of anatase and rutile TiO2:Nb. Acta Physica Sinica, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [12] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [13] Zhao Jing, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan, Zhang Jun-Ju, Shi Feng, Cheng Hong-Chang, Cui Dong-Xu. Research on quantum efficient fitting and structure of high performance transmission-mode GaAs photocathode. Acta Physica Sinica, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [14] Wang Shang-Bao, Dong Ze-Hua, Xu Zhi-Mou, Peng Jing. Metal organic decomposition technique and optical propertiesof amorphous Ba0.7Sr0.3TiO3 thin films. Acta Physica Sinica, 2011, 60(5): 057702. doi: 10.7498/aps.60.057702
    [15] Wang Zhi-Yong, Hu Hui-Fang, Gu Lin, Wang Wei, Jia Jin-Feng. Electronic and optical properties of zigzag graphene nanoribbon with Stone-Wales defect. Acta Physica Sinica, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [16] Wu Xue-Wei, Wu Da-Jian, Liu Xiao-Jun. Effects of B(N, F) doping on optical properties of TiO2 nanoparticles. Acta Physica Sinica, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [17] Zhang Li-Juan, Hu Hui-Fang, Wang Zhi-Yong, Wei Yan, Jia Jin-Feng. Study on the electronic structure and optical properties of B-doped single-walled carbon nanotubes for formaldehyde adsorption. Acta Physica Sinica, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [18] Gu Jian-Feng, Fu Wei-Jia, Liu Ming, Liu Zhi-Wen, Ma Chun-Yu, Zhang Qing-Yu. Highly c-axis textured ZnO thin films grown by electrochemical deposition and their optical properties. Acta Physica Sinica, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [19] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] Shen Jian, Liu Shou-Hua, Shen Zi-Cai, Kong Wei-Jin, Huang Jian-Bing, Shao Jian-Da, Fan Zheng-Xiu. Theoretical study of influence of substrate microdefects on optical properties of dielectric thin films. Acta Physica Sinica, 2005, 54(10): 4920-4925. doi: 10.7498/aps.54.4920
Metrics
  • Abstract views:  11016
  • PDF Downloads:  280
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2019
  • Accepted Date:  13 October 2019
  • Available Online:  28 November 2019
  • Published Online:  01 December 2019

/

返回文章
返回