Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor

Liu Xu-Yang Zhang He-Qiu Li Bing-Bing Liu Jun Xue Dong-Yang Wang Heng-Shan Liang Hong-Wei Xia Xiao-Chuan

Citation:

Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor

Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan
PDF
HTML
Get Citation
  • Semiconductor temperature sensors have been widely used in medical, industrial, aviation and civil fields due to their advantages such as high sensitivity, small size, low power consumption and strong anti-interference ability. However, most Si-based temperature sensors are not suitable for the application in high-temperature environments. The new AlGaN/GaN heterojunction material not only has a wide band gap, but also has a high two-dimensional electron gas concentration and carrier mobility. Therefore, the device made with it not only has good electrical properties, but also can be applied in ultra-high environments. In this paper, a temperature sensor based on gateless AlGaN/GaN high electron mobility transistor structure was fabricated and its temperature-dependent electrical properties were characterized. The temperature dependence of current-voltage characteristics of the device were tested from 50 to 400 °C. The sensitivity of the device was studied as a function of the channel aspect ratio of the device. The stability of electrical properties was characterized after heating in air and nitrogen at 300—500 °C for 1 hour. The theoretical and experimental results show that as the aspect ratio of the device increases, the sensitivity of the device increases. At a fixed current of 0.01 A, the average sensitivity of the device voltage with temperature changes is 44.5 mV/°C. Meanwhile, the good high temperature retention stability is shown during stability experiments.
      Corresponding author: Zhang He-Qiu, hqzhang@dlut.edu.cn
    [1]

    张洵, 靳东明, 刘理天 2006 传感器与微系统 3 1Google Scholar

    Zhang X, Jin D M, Liu L T 2006 Transd. Microsys. Technol. 3 1Google Scholar

    [2]

    Rue B, Flandre D 2007 Proccedings 2007 IEEE International SOI Conference Indian Wells, CA, USA, Oct. 1−4, 2007 p111

    [3]

    de Souza M, Rue B, Flandre D, Pavanello M A 2009 Proccedings 2009 IEEE International SOI Conference Foster City, CA, USA, Oct 5−8, 2009 p1

    [4]

    Xie G, Edward X, Niloufar H, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105Google Scholar

    [5]

    段宝兴, 杨银堂 2014 物理学报 63 057302Google Scholar

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302Google Scholar

    [6]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [7]

    孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈波, 张荣, 韩平, 江若琏, 施毅 2004 物理学报 53 2320Google Scholar

    Kong Y C, Zheng Y D, Zhou C H, Deng Y Z, Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta Phys. Sin. 53 2320Google Scholar

    [8]

    Kwan A M H, Guan Y, Liu X S, Chen K J 2014 IEEE Trans. Electron Devices 61 2970Google Scholar

    [9]

    Rao S, Pangallo G, Della Corte F G 2016 IEEE Trans. Electron Devices 63 414Google Scholar

    [10]

    Matthus C D, Erlbacher T, Hess A, Bauer A J, Frey L 2017 IEEE Trans Electron Devices 64 3399Google Scholar

    [11]

    Madhusoodhanan S, Sandoval S, Zhao Y, Ware M E, Chen Z 2017 IEEE Electr Device Lett. 38 1105Google Scholar

    [12]

    Pristavu G, Brezeanu G, Pascu R, Draghici F, Badila M 2019 Mater. Sci. Semicond. Process. 94 64Google Scholar

    [13]

    顾江, 王强, 鲁宏 2011 物理学报 60 077107Google Scholar

    Gu J, Wang Q, Lu H 2011 Acta Phys. Sin. 60 077107Google Scholar

    [14]

    刘艳 2017 博士学位论文 (济南: 山东大学)

    Liu Y 2017 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [15]

    Huque M A, Eliza S A, Rahman T, Huq H F, Islam S K 2009 Solid State Electron. 53 341Google Scholar

    [16]

    Yahyazadeh R, Hashempour Z 2010 27 th International Conference on Microelectronics (MIEL 2010) Nis, Serbia, May 16−19, 2010 p189

    [17]

    Iwanaga H, Kunishige A, Takeuchi S 2000 J. Mater. Sci. 35 2451Google Scholar

    [18]

    Akita M, Kishimoto S, Mizutani T 2001 IEEE Electron Device Lett. 22 376Google Scholar

    [19]

    Chang Y C, Tong K Y, Surya C 2005 Semicond. Sci. Technol. 20 188Google Scholar

    [20]

    Nagelkerke N J D 1991 Biometrika 78 691Google Scholar

    [21]

    任舰 2017 博士学位论文 (无锡: 江南大学)

    Ren J 2017 Ph. D. Dissertation (Wuxi: Jiangnan University) (in Chinese)

    [22]

    陈伟伟 2016 博士学位论文 (西安: 西安电子科技大学)

    Chen W W 2016 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

  • 图 1  器件结构示意图

    Figure 1.  Schematic diagram of the device structure.

    图 2  HEMT器件两端电压在电流固定时随温度的变化

    Figure 2.  The voltage change across the HEMT device with temperature when the current is fixed.

    图 3  HEMT器件在50−400 ℃下的I-V特性曲线

    Figure 3.  I-V characteristic curve of HEMT device at 50−400 °C

    图 4  固定电流(0.01 A)下电压随温度的变化曲线与其拟合曲线

    Figure 4.  Curve and fitting curve of voltage changes with temperature at fixed current (0.01 A).

    图 5  器件灵敏度随沟道长度的变化

    Figure 5.  Device sensitivity as a function of channel length.

    图 6  器件在N2氛围中的高温保持稳定性

    Figure 6.  Temperature stability of the device in N2 atmosphere.

    图 7  器件在空气氛围中的高温保持稳定性

    Figure 7.  Temperature stability of the device in an air atmosphere.

    表 1  一些不同结构的半导体高温温度传感器

    Table 1.  Some semiconductor high temperature sensors in various structures.

    文献结构灵敏度/ mV/℃温度/℃
    [8]单片集成的AlGaN/GaN HEMT0.3825—250
    [9]4H-SiC p-i-n二极管2.66 20—300
    [10]4H-SiC p-i-n二极管4.525—460
    [11]GaN-on-SiC异质结二极管2.2525—400
    [12]Ni/4H-SiC肖特基二极管2.3325—450
    本文工作无栅AlGaN/GaN HEMT44.550—400
    DownLoad: CSV

    表 2  拟合参数列表

    Table 2.  List of fitting parameters.

    参数μ300 KφB(m)NddAlGaNεAlGaN(m)
    单位cm2/(V·s)eVcm–3nmε0
    11000.85+1.3 m3 × 10172010.4–0.3 m
    DownLoad: CSV
  • [1]

    张洵, 靳东明, 刘理天 2006 传感器与微系统 3 1Google Scholar

    Zhang X, Jin D M, Liu L T 2006 Transd. Microsys. Technol. 3 1Google Scholar

    [2]

    Rue B, Flandre D 2007 Proccedings 2007 IEEE International SOI Conference Indian Wells, CA, USA, Oct. 1−4, 2007 p111

    [3]

    de Souza M, Rue B, Flandre D, Pavanello M A 2009 Proccedings 2009 IEEE International SOI Conference Foster City, CA, USA, Oct 5−8, 2009 p1

    [4]

    Xie G, Edward X, Niloufar H, Zhang B, Fred Y F, Wai T N 2012 Chin. Phys. B 21 086105Google Scholar

    [5]

    段宝兴, 杨银堂 2014 物理学报 63 057302Google Scholar

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302Google Scholar

    [6]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [7]

    孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈波, 张荣, 韩平, 江若琏, 施毅 2004 物理学报 53 2320Google Scholar

    Kong Y C, Zheng Y D, Zhou C H, Deng Y Z, Gu S L, Shen B, Zhang R, Han P, Jiang R L, Shi Y 2004 Acta Phys. Sin. 53 2320Google Scholar

    [8]

    Kwan A M H, Guan Y, Liu X S, Chen K J 2014 IEEE Trans. Electron Devices 61 2970Google Scholar

    [9]

    Rao S, Pangallo G, Della Corte F G 2016 IEEE Trans. Electron Devices 63 414Google Scholar

    [10]

    Matthus C D, Erlbacher T, Hess A, Bauer A J, Frey L 2017 IEEE Trans Electron Devices 64 3399Google Scholar

    [11]

    Madhusoodhanan S, Sandoval S, Zhao Y, Ware M E, Chen Z 2017 IEEE Electr Device Lett. 38 1105Google Scholar

    [12]

    Pristavu G, Brezeanu G, Pascu R, Draghici F, Badila M 2019 Mater. Sci. Semicond. Process. 94 64Google Scholar

    [13]

    顾江, 王强, 鲁宏 2011 物理学报 60 077107Google Scholar

    Gu J, Wang Q, Lu H 2011 Acta Phys. Sin. 60 077107Google Scholar

    [14]

    刘艳 2017 博士学位论文 (济南: 山东大学)

    Liu Y 2017 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [15]

    Huque M A, Eliza S A, Rahman T, Huq H F, Islam S K 2009 Solid State Electron. 53 341Google Scholar

    [16]

    Yahyazadeh R, Hashempour Z 2010 27 th International Conference on Microelectronics (MIEL 2010) Nis, Serbia, May 16−19, 2010 p189

    [17]

    Iwanaga H, Kunishige A, Takeuchi S 2000 J. Mater. Sci. 35 2451Google Scholar

    [18]

    Akita M, Kishimoto S, Mizutani T 2001 IEEE Electron Device Lett. 22 376Google Scholar

    [19]

    Chang Y C, Tong K Y, Surya C 2005 Semicond. Sci. Technol. 20 188Google Scholar

    [20]

    Nagelkerke N J D 1991 Biometrika 78 691Google Scholar

    [21]

    任舰 2017 博士学位论文 (无锡: 江南大学)

    Ren J 2017 Ph. D. Dissertation (Wuxi: Jiangnan University) (in Chinese)

    [22]

    陈伟伟 2016 博士学位论文 (西安: 西安电子科技大学)

    Chen W W 2016 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

Metrics
  • Abstract views:  7703
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2019
  • Accepted Date:  08 December 2019
  • Published Online:  20 February 2020

/

返回文章
返回