Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near infrared characteristics of air plasma induced by nanosecond laser

Wang Xing-Sheng Ma Yan-Ming Gao Xun Lin Jing-Quan

Citation:

Near infrared characteristics of air plasma induced by nanosecond laser

Wang Xing-Sheng, Ma Yan-Ming, Gao Xun, Lin Jing-Quan
PDF
HTML
Get Citation
  • The near infrared emission from laser induced air plasma has been investigated in a range of 1100–2400 nm. The infrared spectra of air plasma consist of linear spectral and continuum radiation. Most of the spectral features observed are identified, including atomic lines of O I and N I and molecular bands of N2. The spectra show trace of blackbody background emission and the plasma temperature is estimated from Planck law. We find that the continuum radiation is mainly origins mainly from the blackbody emission of plasma. There is a limitation of plasma temperature estimation by using Boltzmann method. For example, the local thermodynamic equilibrium must be satisfied, and the trend of change in plasma temperature can be estimated within a few microseconds after the laser shot. In this paper, the plasma temperature in 15 μs after laser irradiation is estimated from the Planck law, and the temperature of air plasma is estimated to be about 3900 K, which can compensate for the shortcomings of Boltzmann method. It is found that the neutral atomic spectra of N and O both may contribute to the radiation of the air plasma at 1128 nm. Then we keep the air pressure in the vacuum chamber at 80 kPa, and change the nitrogen and oxygen content in the chamber. The infrared spectrum data show that the oxygen content in the mixed gas only affect the radiation of 1128 nm wavelength. The binary linear regression analysis shows that oxygen contributes much to the radiation of 1128 nm wavelength. This can be explained by the difference in ionization potential between molecule O2 and N2. The infrared radiation intensities of the air plasma at 1128 nm under 20−80 kPa are obtained, and they are compared with the calculated results obtained with the fitting formula. The predicted value is very close to the experimental value and the relative error is negligibly at the pressure of 30−80 kPa. The study of the characteristics of infrared emission from laser induced plasma is of great significance for understanding and using the physical mechanisms of laser-matter interaction.
      Corresponding author: Gao Xun, lasercust@163.com ; Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575030), the Natural Science Foundation of Jilin, China (Grant No. 20180101283JC), the Department of Education of Jilin, China (Grant No. JJKH20190539KJ), and Funds from Changchun University of Science and Technology, China (Grant No. XJJLG-2017-10)
    [1]

    Murnane M M, Kapteyn H C, Rosen M D, Falcone R W 1991 Science 251 531Google Scholar

    [2]

    Knudtson J T, Green W B, Sutton D G 1987 J. Appl. Phys. 61 4771Google Scholar

    [3]

    Civis S, Ferus M, Kubelík P, Jelinek P, Chernov V E 2012 Astron. Astrophys. 541 A125Google Scholar

    [4]

    Zhong H, Karpowicz N, Zhang X C 2006 Appl. Phys. Lett. 88 261103Google Scholar

    [5]

    Aspiotis J A, Barbieri N, Bernath R, Brown C G, Richardson M, Cooper B Y 2006 Proc. SPIE-Int. Soc. Opt. Eng. 6219 621908

    [6]

    Forestier B, Houard A, Durand M, Andre Y B, Prade B, Dauvignac J Y, Perret F, Pichot C, Pellet M, Mysyrowicz A 2010 Appl. Phys. Lett. 96 141111Google Scholar

    [7]

    Wu B, Kumar A 2007 J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 25 1743Google Scholar

    [8]

    Rusak D A, Castle B C, Smith B W, Winefordner J D 1997 Crit. Rev. Anal. Chem. 27 257Google Scholar

    [9]

    张立文, 林晨, 辛立, 高军毅 2008 强激光与粒子束 20 1603

    Zhang L W, Chen L, Li X, Gao J Y 2008 High Power Laser Part. Beams 20 1603

    [10]

    Thomson M D, Kreß M, Loffler T, Roskos H G 2007 Laser Photonics Rev. 1 349Google Scholar

    [11]

    Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote Sens. Lett. 6 718Google Scholar

    [12]

    Giacconi R 2003 Rev. Mod. Phys. 75 995Google Scholar

    [13]

    Brackett F S 1922 Astrophys. J. 56 154Google Scholar

    [14]

    Pfund A H 1924 J. Opt. Soc. Am. Rev. Sci. Instrum. 9 193Google Scholar

    [15]

    Steffey W W 1926 IEEE Aerosp. Electron. Syst. Mag. 21 55

    [16]

    Meggers W F, De- Bruin T L, Humphreys C J 1929 Science 69 406

    [17]

    Saum K A, Benesch W M 1970 Appl. Opt. 9 1419Google Scholar

    [18]

    Saum K A, Benesch W M 1970 Appl. Opt. 9 195Google Scholar

    [19]

    Tanaka H, Akinaga K, Takahashi A, Okada T 2004 Appl. Phys. A 79 1493Google Scholar

    [20]

    Adamson A W, Cimolino M C 1984 J. Phys. Chem. B 88 488Google Scholar

    [21]

    El-RabiiH, Victorov S B, Yalin A P 2009 J. Phys. D: Appl. Phys. 42 075203Google Scholar

    [22]

    Harilal S S, Skrodzki P J, Miloshevsky A, Brumfield B E, Phillips M C, Miloshevsky G 2017 Phys. Plasmas 24 063304Google Scholar

    [23]

    Radziemski L J, Cremers D A, Bostian M, Chinni R C, Navarro-northrup C 2007 Appl. Spectrosc. 61 1141Google Scholar

    [24]

    Lofthus A, Krupenie P H 2009 J. Phys. Chem. Ref. Data 6 113

    [25]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308318

    [26]

    Shneider M N, Zheltikovs A M, Miles R B 2011 Phys. Plasmas. 18 063509Google Scholar

  • 图 1  纳秒激光诱导空气等离子体近红外辐射实验装置

    Figure 1.  Experiment setup for the near infrared emissions from ns laser-induced air plasma.

    图 2  不同能量下激光诱导空气等离子体在激光作用15 μs后测到的红外辐射光谱

    Figure 2.  IR emissions of laser-induced air plasma varied with laser energy after 15 μs delay time.

    图 3  80 kPa气压下激光诱导空气和氮气等离子体红外辐射光谱

    Figure 3.  IR emissions of laser-induced air and N2 plasma under 80 kPa.

    图 4  O2和N2气体不同压强比的激光诱导等离子体红外辐射光谱

    Figure 4.  IR emissions of laser-induced plasma of mixed gas with different pressure.

    图 5  二元线性回归分析结果

    Figure 5.  The fitting result of binary linear regression analysis.

    表 1  氮原子和氧原子的红外光谱指认

    Table 1.  Identification of the observed emission lines of NI and OI

    Speciesλ/nmAki/s–1Lower stateUpper state
    Term symbolJTerm symbolJ
    O I1128.63172.32 × 1072s22p3(4S0)3p 3P12s22p3(4S0)3d 32
    O I1128.64061.29 × 1072s22p3(4S0)3p 3P12s22p3(4S0)3d 31
    O I1128.69143.09 × 1072s22p3(4S0)3p 3P22s22p3(4S0)3d 33
    O I1128.70297.74 × 1062s22p3(4S0)3p 3P22s22p3(4S0)3d 32
    O I1128.73181.72 × 1072s22p3(4S0)3p 3P02s22p3(4S0)3d 31
    O I1129.51035.34 × 1062s22p3(4S0)3p 5P12s22p3(4S0)4s 52
    O I1129.76828.90 × 1062s22p3(4S0)3p 5P22s22p3(4S0)4s 52
    O I1130.23781.25 × 1072s22p3(4S0)3p 5P32s22p3(4S0)3d 52
    N I1129.1671.20 × 1072s22p2(3P)3p 47/22s22p2(3P)4s 4P5/2
    N I1131.3891.00 × 1072s22p2(3P)3p 45/22s22p2(3P)4s 4P3/2
    N I1132.3188.19 × 1062s22p2(3P)3p 43/22s22p2(3P)4s 4P1/2
    N I1246.12531.82 × 1072s22p2(3P)3p 23/22s22p2(3P)3d 2F5/2
    N I1246.96152.18 × 1072s22p2(3P)3p 25/22s22p2(3P)3d 2F7/2
    N I1358.13235.76 × 1062s22p2(3P)3 s 2P3/22s22p2(3P)3p 21/2
    N I1358.77106.31 × 1062s22p2(3P)3p 25/22s22p2(3P)4s 2P3/2
    N I1360.2271.07 × 1072s22p2(3P)3p 21/22s22p2(3P)3d 2D3/2
    N I1362.4181.33 × 1072s22p2(3P)3p 23/22s22p2(3P)3d 2D5/2
    N I1475.70731.06 × 1062s22p4 4P5/22s22p2(3P)3p 47/2
    N I1558.22876.5 × 1062s22p2(3P)3p 23/22s22p2(3P)4s 2P3/2
    DownLoad: CSV

    表 2  波长1128 nm红外光谱强度拟合公式预测值与实验值对比

    Table 2.  Comparison between predicted value and experimental value of the intensity of 1128 nm.

    气体气压/kPa预测值实验值相对误差/%
    Air801698421669031.76
    701486121531362.95
    601273821403179.21
    501061511176739.79
    4084921885164.06
    30636915657512.56
    20424602796451.80
    DownLoad: CSV
  • [1]

    Murnane M M, Kapteyn H C, Rosen M D, Falcone R W 1991 Science 251 531Google Scholar

    [2]

    Knudtson J T, Green W B, Sutton D G 1987 J. Appl. Phys. 61 4771Google Scholar

    [3]

    Civis S, Ferus M, Kubelík P, Jelinek P, Chernov V E 2012 Astron. Astrophys. 541 A125Google Scholar

    [4]

    Zhong H, Karpowicz N, Zhang X C 2006 Appl. Phys. Lett. 88 261103Google Scholar

    [5]

    Aspiotis J A, Barbieri N, Bernath R, Brown C G, Richardson M, Cooper B Y 2006 Proc. SPIE-Int. Soc. Opt. Eng. 6219 621908

    [6]

    Forestier B, Houard A, Durand M, Andre Y B, Prade B, Dauvignac J Y, Perret F, Pichot C, Pellet M, Mysyrowicz A 2010 Appl. Phys. Lett. 96 141111Google Scholar

    [7]

    Wu B, Kumar A 2007 J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 25 1743Google Scholar

    [8]

    Rusak D A, Castle B C, Smith B W, Winefordner J D 1997 Crit. Rev. Anal. Chem. 27 257Google Scholar

    [9]

    张立文, 林晨, 辛立, 高军毅 2008 强激光与粒子束 20 1603

    Zhang L W, Chen L, Li X, Gao J Y 2008 High Power Laser Part. Beams 20 1603

    [10]

    Thomson M D, Kreß M, Loffler T, Roskos H G 2007 Laser Photonics Rev. 1 349Google Scholar

    [11]

    Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote Sens. Lett. 6 718Google Scholar

    [12]

    Giacconi R 2003 Rev. Mod. Phys. 75 995Google Scholar

    [13]

    Brackett F S 1922 Astrophys. J. 56 154Google Scholar

    [14]

    Pfund A H 1924 J. Opt. Soc. Am. Rev. Sci. Instrum. 9 193Google Scholar

    [15]

    Steffey W W 1926 IEEE Aerosp. Electron. Syst. Mag. 21 55

    [16]

    Meggers W F, De- Bruin T L, Humphreys C J 1929 Science 69 406

    [17]

    Saum K A, Benesch W M 1970 Appl. Opt. 9 1419Google Scholar

    [18]

    Saum K A, Benesch W M 1970 Appl. Opt. 9 195Google Scholar

    [19]

    Tanaka H, Akinaga K, Takahashi A, Okada T 2004 Appl. Phys. A 79 1493Google Scholar

    [20]

    Adamson A W, Cimolino M C 1984 J. Phys. Chem. B 88 488Google Scholar

    [21]

    El-RabiiH, Victorov S B, Yalin A P 2009 J. Phys. D: Appl. Phys. 42 075203Google Scholar

    [22]

    Harilal S S, Skrodzki P J, Miloshevsky A, Brumfield B E, Phillips M C, Miloshevsky G 2017 Phys. Plasmas 24 063304Google Scholar

    [23]

    Radziemski L J, Cremers D A, Bostian M, Chinni R C, Navarro-northrup C 2007 Appl. Spectrosc. 61 1141Google Scholar

    [24]

    Lofthus A, Krupenie P H 2009 J. Phys. Chem. Ref. Data 6 113

    [25]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308318

    [26]

    Shneider M N, Zheltikovs A M, Miles R B 2011 Phys. Plasmas. 18 063509Google Scholar

  • [1] Xie Zhuo, Wen Zhi-Lin, Si Ming-Qi, Dou Yin-Ping, Song Xiao-Wei, Lin Jing-Quan. Characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [2] He Xin, Jiang Tao, Zhang Zhen-Fu, Yang Jun-Bo. Bound-state characteristic temperature method and its applications. Acta Physica Sinica, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [3] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] The characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211450
    [5] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [6] Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions. Acta Physica Sinica, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [7] Dai Yu-Jia, Song Xiao-Wei, Gao Xun, Wang Xing-Sheng, Lin Jing-Quan. Characteristics of radio-frequency emission from nanosecond laser-induced breakdown plasma of air. Acta Physica Sinica, 2017, 66(18): 185201. doi: 10.7498/aps.66.185201
    [8] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [9] Chen Hong, Lan Hui, Chen Zi-Qi, Liu Lu-Ning, Wu Tao, Zuo Du-Luo, Lu Pei-Xiang, Wang Xin-Bing. Experimental study on laser produced tin droplet plasma extreme ultraviolet light source. Acta Physica Sinica, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [10] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [11] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [12] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [13] Wu Yi, Rong Ming-Zhe, Yang Fei, Wang Xiao-Hua, Ma Qiang, Wang Wei-Zong. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma. Acta Physica Sinica, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [14] Generation of single plasma channel in air. Acta Physica Sinica, 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [15] Hao Zuo-Qiang, Zhang Jie, Yu Jin, Zhang Zhe, Zhong Jia-Yong, Zang Chong-Zhi, Jin Zhan, Wang Zhao-Hua, Wei Zhi-Yi. Fluorescence measurement and acoustic diagnostics of plasma channels in air. Acta Physica Sinica, 2006, 55(1): 299-303. doi: 10.7498/aps.55.299
    [16] Zhang Zhe, Zhang Jie, Li Yu-Tong, Hao Zuo-Qiang, Zheng Zhi-Yuan, Yuan Xiao-Hui, Wang Zhao-Hua. Measurements of electric resistivity of plasma channels in air. Acta Physica Sinica, 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [17] Lin Zhao-Xiang, Wu Jin-Quan, Gong Shun-Sheng. Spectroscopic study on the air plasma induced by delayed dual laser pulses. Acta Physica Sinica, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [18] Hao Zuo-Qiang, Zhang Jie, Zhang Zhe, Xi Ting-Ting, Zheng Zhi-Yuan, Yuan Xiao-Hui, Wang Zhao-Hua. Third harmonic generation in plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [19] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma. Acta Physica Sinica, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] Bian Bao-min, Chen Jian-ping, Yang Ling, Ni Xiao-wu, Lu Jian. . Acta Physica Sinica, 2000, 49(3): 445-448. doi: 10.7498/aps.49.445
Metrics
  • Abstract views:  7945
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2019
  • Accepted Date:  05 November 2019
  • Published Online:  20 January 2020

/

返回文章
返回