Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of pre-orientation on formation of microstructure of lamella crystal and the stress response of semicrystalline polymers: Molecular dynamics simulations

Yang Jun-Sheng Zhu Zi-Liang Cao Qi-Long

Citation:

Effect of pre-orientation on formation of microstructure of lamella crystal and the stress response of semicrystalline polymers: Molecular dynamics simulations

Yang Jun-Sheng, Zhu Zi-Liang, Cao Qi-Long
PDF
HTML
Get Citation
  • Molecular dynamics simulations have been used to study the effect of the pre-orientation on the microstructure of lamella crystal and the stress response of polyvinyl alcohol (PVA) semicrystalline polymer under stretching. For the different pre-oriented systems, nucleation is demonstrated to be a two-step process, however, in a different intermediate order. For the isotropic PVA polymer melt, the segment needs more time to adjust its inter-chain structure, therefore, the nucleation is assisted by local order structures, while the nucleation of the oriented PVA melt is promoted by density fluctuation. The nucleation process is the result of coupling effect of conformational and orientational ordering. The transformation from flexible chains into conformational ordered segments circumvents the entropic penalty under the shear flow, which is the most peculiar and rate-limited step in polymer crystallization. Therefore, the current work suggests that the acceleration of the nucleation rate by shear deformation is mainly attributed to the different kinetic pathway via conformational/orientational ordering-density fluctuation-nucleation. From the different pre-oriented PVA semicrystalline polymers, we know that the higher oriented degree corresponds to a higher number of Tie chains and lower Loop chains, and the higher number of Tie chains corresponds to a stronger stress-strain response. And the detailed molecular structural evolution of semicrystalline polymer under stretching is also given in this work.
      Corresponding author: Yang Jun-Sheng, yangjunsheng2005@163.com ; Cao Qi-Long, qlcao@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704329), the Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 15ZB293), and the Open Research Fund of Computational Physics Key Laboratory of Sichuan province, Yibin University, China (JSWL2014KF02)
    [1]

    Li L, de Jeu W 2005 Adv. Polym. Sci. 181 75

    [2]

    Liu D, Cui K, Huang N, Wang Z, Li L 2015 Sci. China Chem. 58 1570Google Scholar

    [3]

    Stephanou P S, Tsimouri I C, Mavrantzas V G 2016 Macromolecules 49 3161Google Scholar

    [4]

    Luo C, Kröger M, Sommer J U 2016 Macromolecules 49 9017Google Scholar

    [5]

    Luo C, Kröger M, Sommer J U 2017 Polymer 109 71Google Scholar

    [6]

    Tang X, Yang J, Xu T, Tian F, Xie C, Li L 2017 Phys. Rev. Mate. 1 073401

    [7]

    Yang J, Tang X, Wang Z, Xu T, Tian F, Ji Y, Li L 2017 J. Chem. Phys. 146 014901Google Scholar

    [8]

    Tang X, Yang J, Tian F, Xu T, Xie C, Chen W, Li L 2018 J. Chem. Phys. 149 224901Google Scholar

    [9]

    Yamamoto T 2014 Macromolecules 47 3192Google Scholar

    [10]

    Baig C, Edwards B J 2010 Europhys. Lett. 89 36003Google Scholar

    [11]

    Yang J S, Yang C, Wang M, Chen B, Ma X 2011 Phys. Chem. Chem. Phys. 13 15476Google Scholar

    [12]

    Yang J S, Huang D H, Cao Q, Li Q, Wang L, Wang F 2013 Chin. Phys. B 22 098101Google Scholar

    [13]

    杨俊升, 黄多辉 2019 物理学报 68 138301Google Scholar

    Yang J S, Huang D H 2019 Acta Phys. Sin. 68 138301Google Scholar

    [14]

    杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国 2017 物理学报 66 227101Google Scholar

    Yang W L, Han J S, Wang Y, Lin J Q, He G Q, Sun H G 2017 Acta Phys. Sin. 66 227101Google Scholar

    [15]

    潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红 2019 物理学报 68 176801Google Scholar

    Pan D, Liu C X, Zhang Z Y, Gao Y J, Hao X H 2019 Acta Phys. Sin. 68 176801Google Scholar

    [16]

    Cui K, Ma Z, Wang Z, Ji Y, Liu D, Huang N, Chen L, Zhang W, Li L 2015 Macromolecules 48 5276Google Scholar

    [17]

    Cui K, Meng L, Ji Y, Li J, Zhu S, Li X, Tian N, Liu D, Li L 2014 Macromolecules 47 677Google Scholar

    [18]

    Luo C, Sommer J 2016 ACS Macro Lett. 5 30Google Scholar

    [19]

    Tang X, Chen W, Li L 2019 Macromolecules 52 3575Google Scholar

    [20]

    Meyer H, Müller-Plathe F 2001 J. Chem. Phys. 115 7807Google Scholar

    [21]

    Luo C, Sommer J 2009 Comp. Phys. Comm. 180 1382Google Scholar

    [22]

    Wang S, Wang Y, Cheng S, Li X, Zhu X, Sun H 2013 Macromolecules 46 3147Google Scholar

    [23]

    Kelchner C L, Plimpton S, Hamilton J 1998 Phys. Rev. B 58 11085Google Scholar

    [24]

    Wang Z, Ju J, Yang J, Ma Z, Liu D, Cui K, Yang H, Chang J, Huang N, Li L 2016 Sci. Rep. 6 32968Google Scholar

    [25]

    Wang Y, Jiang Z, Wu Z, Men Y 2013 Macromolecules 45 518Google Scholar

    [26]

    Siviour C R, Jordan J L 2016 J. Dyn. Behav. Mater. 2 15Google Scholar

    [27]

    Lin Y, Li X, Meng L, Chen X, Li L 2018 Macromolecules 51 2690Google Scholar

    [28]

    Lin Y, Li X, Meng L, Chen X, Lü F, Zhang Q, Li L 2018 Polymer 148 79Google Scholar

  • 图 1  (a)高分子熔体剪切示意图; (b)高分子熔体在剪切场温度为T = 1.0下的σxy, RetePall演化曲线

    Figure 1.  (a) Schematic diagram of polymer melts under shear flow; (b) evolutions of σxy, Rete and Pall for polymer melts under shear with temperature of T = 1.0.

    图 2  (a)成核原子判定方法示意图; (b)伸直链判定方法示意图; (c) PVA半晶态高分子结构晶区与无定型区S值的分布

    Figure 2.  Schematic diagram of (a) centro-symmetry parameter and (b) stretched chain segment for PVA crystal; (c) S distribution of crystal and melt of PVA semicrystalline polymers.

    图 3  不同应变下PVA熔体的${\phi _{\rm{c}}}$, d tt, VS随时间的演化过程 (a) γ = 0; (b) γ = 1; (c) γ = 1.5; (d) γ = 2; (e) γ = 4; (f) γ = 8

    Figure 3.  Evolutions of ${\phi _{\rm{c}}}$, d tt, V and S of nucleation atoms under different stains: (a) γ = 0; (b) γ = 1; (c) γ = 1.5; (d) γ = 2; (e) γ = 4; (f) γ = 8.

    图 4  (a)半晶态高分子结构中无定型对应的链结构分类模型; (b), (c) PVA半晶态高分子结构中晶体和无定型的原子结构

    Figure 4.  (a) Schematic diagram of crystalline and amorphous chain structure for the semicrystalline polymers; (b) and (c) atomic structure of crystal and melt of PVA semicrystalline polymers.

    图 5  (a)不同剪切应下PVA半晶态高分子对应的${\phi _{\rm{c}}}$、晶体取向参数Pc和无定型结构取向参数Pa; (b)不同剪切应变下PVA半晶态高分子无定型链结构数目的演化

    Figure 5.  (a) ${\phi _{\rm{c}}}$, crystalline order parameter Pc, and amorphous order parameter Pa for PVA semicrystalline polymers with different shear strains; (b) the evolution of the numbers of amorphous chains for PVA semicrystalline polymers with different shear strains.

    图 6  不同预取向半晶态高分子结构在恒定速率为$1 \times {10^{{\rm{ - }}5}}{\tau ^{ - 1}}$拉伸场下对应的应力-应变曲线

    Figure 6.  Stress-strain curves of PVA semicrystalline polymer with different orientation degree under the stretched rate of $1 \times {10^{{\rm{ - }}5}}{\tau ^{ - 1}}$.

    图 7  γ = 6时对应的单链构象随着应变ε的演化过程

    Figure 7.  Structural evolution of single PVA chain as a function of strain ε when γ = 6.

  • [1]

    Li L, de Jeu W 2005 Adv. Polym. Sci. 181 75

    [2]

    Liu D, Cui K, Huang N, Wang Z, Li L 2015 Sci. China Chem. 58 1570Google Scholar

    [3]

    Stephanou P S, Tsimouri I C, Mavrantzas V G 2016 Macromolecules 49 3161Google Scholar

    [4]

    Luo C, Kröger M, Sommer J U 2016 Macromolecules 49 9017Google Scholar

    [5]

    Luo C, Kröger M, Sommer J U 2017 Polymer 109 71Google Scholar

    [6]

    Tang X, Yang J, Xu T, Tian F, Xie C, Li L 2017 Phys. Rev. Mate. 1 073401

    [7]

    Yang J, Tang X, Wang Z, Xu T, Tian F, Ji Y, Li L 2017 J. Chem. Phys. 146 014901Google Scholar

    [8]

    Tang X, Yang J, Tian F, Xu T, Xie C, Chen W, Li L 2018 J. Chem. Phys. 149 224901Google Scholar

    [9]

    Yamamoto T 2014 Macromolecules 47 3192Google Scholar

    [10]

    Baig C, Edwards B J 2010 Europhys. Lett. 89 36003Google Scholar

    [11]

    Yang J S, Yang C, Wang M, Chen B, Ma X 2011 Phys. Chem. Chem. Phys. 13 15476Google Scholar

    [12]

    Yang J S, Huang D H, Cao Q, Li Q, Wang L, Wang F 2013 Chin. Phys. B 22 098101Google Scholar

    [13]

    杨俊升, 黄多辉 2019 物理学报 68 138301Google Scholar

    Yang J S, Huang D H 2019 Acta Phys. Sin. 68 138301Google Scholar

    [14]

    杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国 2017 物理学报 66 227101Google Scholar

    Yang W L, Han J S, Wang Y, Lin J Q, He G Q, Sun H G 2017 Acta Phys. Sin. 66 227101Google Scholar

    [15]

    潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红 2019 物理学报 68 176801Google Scholar

    Pan D, Liu C X, Zhang Z Y, Gao Y J, Hao X H 2019 Acta Phys. Sin. 68 176801Google Scholar

    [16]

    Cui K, Ma Z, Wang Z, Ji Y, Liu D, Huang N, Chen L, Zhang W, Li L 2015 Macromolecules 48 5276Google Scholar

    [17]

    Cui K, Meng L, Ji Y, Li J, Zhu S, Li X, Tian N, Liu D, Li L 2014 Macromolecules 47 677Google Scholar

    [18]

    Luo C, Sommer J 2016 ACS Macro Lett. 5 30Google Scholar

    [19]

    Tang X, Chen W, Li L 2019 Macromolecules 52 3575Google Scholar

    [20]

    Meyer H, Müller-Plathe F 2001 J. Chem. Phys. 115 7807Google Scholar

    [21]

    Luo C, Sommer J 2009 Comp. Phys. Comm. 180 1382Google Scholar

    [22]

    Wang S, Wang Y, Cheng S, Li X, Zhu X, Sun H 2013 Macromolecules 46 3147Google Scholar

    [23]

    Kelchner C L, Plimpton S, Hamilton J 1998 Phys. Rev. B 58 11085Google Scholar

    [24]

    Wang Z, Ju J, Yang J, Ma Z, Liu D, Cui K, Yang H, Chang J, Huang N, Li L 2016 Sci. Rep. 6 32968Google Scholar

    [25]

    Wang Y, Jiang Z, Wu Z, Men Y 2013 Macromolecules 45 518Google Scholar

    [26]

    Siviour C R, Jordan J L 2016 J. Dyn. Behav. Mater. 2 15Google Scholar

    [27]

    Lin Y, Li X, Meng L, Chen X, Li L 2018 Macromolecules 51 2690Google Scholar

    [28]

    Lin Y, Li X, Meng L, Chen X, Lü F, Zhang Q, Li L 2018 Polymer 148 79Google Scholar

Metrics
  • Abstract views:  7651
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2019
  • Accepted Date:  28 November 2019
  • Published Online:  05 February 2020

/

返回文章
返回