Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Super-lattice patterns in two-layered coupled non-symmetric reaction diffusion systems

Liu Fu-Cheng Liu Ya-Hui Zhou Zhi-Xiang Guo Xue Dong Meng-Fei

Citation:

Super-lattice patterns in two-layered coupled non-symmetric reaction diffusion systems

Liu Fu-Cheng, Liu Ya-Hui, Zhou Zhi-Xiang, Guo Xue, Dong Meng-Fei
PDF
HTML
Get Citation
  • The coupling mechanism is one of most important approaches to generating multiple-scaled spatial-temporal patterns. In this paper, the mode interaction between two different Turing modes and the pattern forming mechanisms in the non-symmetric reaction diffusion system are numerically investigated by using a two-layered coupled model. This model is comprised of two different reaction diffusion models: the Brusselator model and the Lengyel-Epstein model. It is shown that the system gives rise to superlattice patterns if these two Turing modes satisfy the spatial resonance condition, otherwise the system yields simple patterns or superposition patterns. A suitable wave number ratio and the same symmetry are two necessary conditions for the spatial resonance of Turing modes. The eigenvalues of these two Turing modes can only vary in a certain range in order to make the two sub-system patterns have the same symmetry. Only when the long wave mode becomes the unstable mode, can it modulate the other Turing mode and result in the formation of spatiotemporal patterns with multiple scale. As the wave number ratio increases, the higher-order harmonics of the unstable mode appear, and the sub-system with short wave mode undergoes a transition from the black-eye pattern to the white-eye pattern, and finally to a temporally oscillatory hexagon pattern. It is demonstrated that the resonance between the Turing mode and its higher-order harmonics located in the wave instability region is the dominant mechanism of the formation of this oscillatory hexagon pattern. Moreover, it is found that the coupling strength not only determines the amplitudes of these patterns, but also affects their spatial structures. Two different types of white-eye patterns and a new super-hexagon pattern are obtained as the coupling strength increases. These results can conduce to understanding the complex spatial-temporal behaviors in the coupled reaction diffusion systems.
      Corresponding author: Liu Fu-Cheng, hdlfc@hbu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 11975089, 11875014), the Natural Science Foundation of Hebei Province, China (Grant No. A2017201099), and the Postdoctoral Science Foundation of Hebei University, China
    [1]

    Ross T D, Lee H J, Qu Z J, Banks R A, Phillips R, Thomson M 2019 Nature 572 224Google Scholar

    [2]

    Wang Y, Zhang R P, Wang Z, Han Z J 2019 Chin. Phys. B 28 050503Google Scholar

    [3]

    Gaskins D K, Pruc E E, Epstein I R, Dolnik M 2016 Phys. Rev. Lett. 117 056001Google Scholar

    [4]

    Hannabuss J, Lera-Ramirez M, Cade N I, Fourniol F J, Nedelec F, Surrey T 2019 Curr. Biol. 29 2120Google Scholar

    [5]

    黄志精, 李倩昀, 白婧, 唐国宁 2019 物理学报 68 110503Google Scholar

    Huang Z J, Li Q Y, Bai J, Tang G N 2019 Acta Phys. Sin. 68 110503Google Scholar

    [6]

    Qian Y, Gao H Y, Yao C G, Cui X H, Ma J 2018 Chin. Phys. B 27 108902Google Scholar

    [7]

    Turing A M 1952 Philos. Trans. R. Soc. London, Ser. B 237 37Google Scholar

    [8]

    Guiu-Souto J, Carballido-Landeira J, Munuzuri A P 2012 Phys. Rev. E 85 056205Google Scholar

    [9]

    Epstein I R, Berenstein I B, Dolnik M, Vanag V K, Yang L F, Zhabotinsky A M 2008 Phil. Trans. R. Soc. A 366 397Google Scholar

    [10]

    张荣培, 王震, 王语, 韩子健 2018 物理学报 67 050503Google Scholar

    Zhang R P, Wang Z, Wang Y, Han Z J 2018 Acta Phys. Sin. 67 050503Google Scholar

    [11]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303Google Scholar

    [12]

    Yang L F, Epstein I R 2004 Phys. Rev. E 69 026211Google Scholar

    [13]

    Liu F C, He Y F, Pan Y Y 2010 Commun. Theor. Phys. 53 971Google Scholar

    [14]

    Catlla A J, McNamara A, Topaz C M 2012 Phys. Rev. E 85 026215Google Scholar

    [15]

    白占国, 刘富成, 董丽芳 2015 物理学报 64 210505Google Scholar

    Bai Z G, Liu F C, Dong L F 2015 Acta Phys. Sin. 64 210505Google Scholar

    [16]

    白占国, 董丽芳, 李永辉, 范伟丽 2011 物理学报 60 118201Google Scholar

    Bai Z G, Dong L F, Li Y H, Fan W L 2011 Acta Phys. Sin. 60 118201Google Scholar

    [17]

    李新政, 白占国, 李燕 2019 物理学报 68 068201Google Scholar

    Li X Z, Bai Z G, Li Y 2019 Acta Phys. Sin. 68 068201Google Scholar

    [18]

    李新政, 白占国, 李燕, 赵昆, 贺亚峰 2013 物理学报 62 220503Google Scholar

    Li X Z, Bai Z G, Li Y, Zhao K, He Y F 2013 Acta Phys. Sin. 62 220503Google Scholar

    [19]

    Gambino G, Lombardo M C, Sammartino M, Sciacca V 2013 Phys. Rev. E 88 042925Google Scholar

    [20]

    Biancalani T, Fanelli D, Di Patti F 2010 Phys. Rev. E 81 046215Google Scholar

    [21]

    Berenstein I, Munuzuri A P, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2008 Phys. Rev. E 78 025101Google Scholar

    [22]

    Li J, Wang H L, Ouyang Q 2014 Chaos 24 023115Google Scholar

    [23]

    Berenstein I, Yang L, Dolnik M, Zhabotinsky A M, Epstein I R 2003 Phys. Rev. Lett. 91 058302Google Scholar

    [24]

    Feng F, Yan J, Liu F C, He Y F 2016 Chin. Phys. B 25 104702Google Scholar

    [25]

    Li C X, Dong L F, Feng J Y, Huang Y P 2019 Phys. Plasmas 26 023505Google Scholar

    [26]

    Sun H Y, Dong L F, Fan W L, Mi Y L, Liu B B, Huang J Y, Li C X, Pan Y Y 2018 Phys. Plasmas 25 123511Google Scholar

    [27]

    Han R, Dong L F, Huang J Y, Sun H Y, Liu B B, Mi Y L 2019 Chin. Phys. B 28 075204Google Scholar

  • 图 1  不同参数下耦合系统的色散关系 (a) Du1 = 12.6, Dv1 = 27.9, Du2 = 22, Dv2 = 420, α = 0.1; (b) Du1 = 5.3, Dv1 = 20, Du2 = 22, Dv2 = 500, α = 0.1

    Figure 1.  Dispersion relations of coupled systems under different parameters: (a) Du1 = 12.6, Dv1 = 27.9, Du2 = 22, Dv2 = 420, α = 0.1; (b) Du1 = 5.3, Dv1 = 20, Du2 = 22, Dv2 = 500, α = 0.1.

    图 2  不同波数比下的超点阵斑图及其傅里叶频谱图 (a) 1∶2下的黑眼斑图, ${D_{u1}} = 13.5$, ${D_{v1}} = 27.5$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (b) 1∶3下的白眼斑图, ${D_{u1}} = 6$, ${D_{v1}} = 12.3$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (c) 1∶4下的白眼斑图, ${D_{u1}} = 3.4$, ${D_{v1}} = 6.96$, ${D_{u2}} = 21.9$, ${D_{v2}} = 400$. $\alpha = 0.1$

    Figure 2.  Superlattice pattern and fourier spectrum under different wave number ratios: (a) Black eye pattern at 1∶2, ${D_{u1}} = 13.5$, ${D_{v1}} = 27.5$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (b) white eye pattern at 1∶3, ${D_{u1}} = 6$, ${D_{v1}} = 12.3$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (c) white eye pattern at 1∶4, ${D_{u1}} = 3.4$, ${D_{v1}} = 6.96$, ${D_{u2}} = 21.9$, ${D_{v2}} = 400$. $\alpha = 0.1$.

    图 3  波数比为1∶5时的时间振荡超六边形斑图, ${D_{u1}} = 2.2$, ${D_{v1}} = 4.5$, ${D_{u2}} = 21.9$, ${D_{v2}} = 400$, $\alpha = 0.1$ (a) 色散关系曲线; (b) 三个位置处u1的时间变化关系图; (c) 一个振荡周期内的斑图演化过程

    Figure 3.  Oscillatory super-hexagon pattern with wave number ratio of 1∶5, ${D_{u1}} = 2.2$, ${D_{v1}} = 4.5$, ${D_{u2}} = 21.9$, ${D_{v2}} = 400$, $\alpha = 0.1$: (a) Dispersion curve; (b) time variation of u1 at three positions; (c) evolution of pattern in an oscillating period.

    图 4  不同本征值${h_2}$下的复杂斑图及其傅里叶频谱图 (a) 蜂窝状六边形斑图${h_2} = - 2.56$, ${D_{u1}} = 8.5$, ${D_{v1}} = 12.5$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (b) 白眼斑图${h_2} = - 1.3$, ${D_{u1}} = 7$, ${D_{v1}} = 12.3$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (c) 白眼斑图${h_2} = - 0.55$, ${D_{u1}} = 6$, ${D_{v1}} = 12.3$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (d) 超六边形斑图${h_2} = - 0.31$, ${D_{u1}} = 5.9$, ${D_{v1}} = 12.7$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (e) 条纹斑图${h_2} = 0.67$, ${D_{u1}} = 5.5$, ${D_{v1}} = 16$, ${D_{u2}} = 22$, ${D_{v2}} = 400$. $\alpha = 0.1$.

    Figure 4.  Complex patterns and Fourier spectrum under different eigenvalues ${h_2}$: (a) Honeycomb hexagon pattern ${h_2} = - 2.56$, ${D_{u1}} = 8.5$, ${D_{v1}} = 12.5$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (b) white-eye pattern ${h_2} = - 1.3$, ${D_{u1}} = 7$, ${D_{v1}} = 12.3$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (c) white-eye pattern ${h_2} = - 0.55$, ${D_{u1}} = 6$, ${D_{v1}} = 12.3$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (d) super-hexagon pattern ${h_2} = - 0.31$, ${D_{u1}} = 5.9$, ${D_{v1}} = 12.7$, ${D_{u2}} = 22$, ${D_{v2}} = 400$; (e) stripe pattern ${h_2} = 0.67$, ${D_{u1}} = 5.5$, ${D_{v1}} = 16$, ${D_{u2}} = 22$, ${D_{v2}} = 400$. $\alpha = 0.1$.

    图 5  不同本征值$ {h_1}$下的复杂斑图及其傅里叶频谱图 (a) 白眼斑图, $ {h_1} = 0.2$, $ {D_{u1}} = 6.1$, $ {D_{v1}} = 12.7$, $ {D_{u2}} = 22.3$, $ {D_{v2}} = 403$; (b) 条纹点状斑图, $ {h_1} = 0.4$, $ {D_{u1}} = 6.1$, $ {D_{v1}} = 12.6$, $ {D_{u2}} = 20.3$, $ {D_{v2}} = 464$, $ \alpha = 0.1$

    Figure 5.  Complex patterns and fourier spectrum under different eigenvalues ${h_1}$: (a) White-eye pattern, ${h_1} = 0.2$, ${D_{u1}} = 6.1$, ${D_{v1}} = 12.7$, ${D_{u2}} = 22.3$, ${D_{v2}} = 403$; (b) stripe-spot pattern, ${h_1} = 0.4$, ${D_{u1}} = 6.1$, ${D_{v1}} = 12.6$, ${D_{u2}} = 20.3$, ${D_{v2}} = 464$, $\alpha = 0.1$.

    图 6  不同耦合强度下的超六边形斑图 (a) 白眼斑图, $\alpha = 0.01$, ${D_{u1}} = 5.8$, ${D_{v1}} = 11.4$, ${D_{u2}} = 22$, ${D_{v2}} = 367$; (b) 白眼斑图, $\alpha = 0.1$, ${D_{u1}} = 6.3$, ${D_{v1}} = 12.9$, ${D_{u2}} = 21.8$, ${D_{v2}} = 395$; (c) 新型超六边形斑图, $\alpha = 0.2$, ${D_{u1}} = 6.1$, ${D_{v1}} = 13$, ${D_{u2}} = 22$, ${D_{v2}} = 432$; (d) 新白眼斑图, $\alpha = 0.3$, ${D_{u1}} = 6.3$, ${D_{v1}} = 13.98$, ${D_{u2}} = 22$, ${D_{v2}} = 460$

    Figure 6.  Super-hexagon patterns with different coupling strength: (a) White-eye pattern, $\alpha = 0.01$, ${D_{u1}} = 5.8$, ${D_{v1}} = 11.4$, ${D_{u2}} = 22$, ${D_{v2}} = 367$; (b) white-eye pattern, $\alpha = 0.1$, ${D_{u1}} = 6.3$, ${D_{v1}} = 12.9$, ${D_{u2}} = 21.8$, ${D_{v2}} = 395$; (c) new super-hexagon pattern, $\alpha = 0.2$, ${D_{u1}} = 6.1$, ${D_{v1}} = 13$, ${D_{u2}} = 22$, ${D_{v2}} = 432$; (d) new white-eye pattern, $\alpha = 0.3$, ${D_{u1}} = 6.3$, ${D_{v1}} = 13.98$, ${D_{u2}} = 22$, ${D_{v2}} = 460$.

  • [1]

    Ross T D, Lee H J, Qu Z J, Banks R A, Phillips R, Thomson M 2019 Nature 572 224Google Scholar

    [2]

    Wang Y, Zhang R P, Wang Z, Han Z J 2019 Chin. Phys. B 28 050503Google Scholar

    [3]

    Gaskins D K, Pruc E E, Epstein I R, Dolnik M 2016 Phys. Rev. Lett. 117 056001Google Scholar

    [4]

    Hannabuss J, Lera-Ramirez M, Cade N I, Fourniol F J, Nedelec F, Surrey T 2019 Curr. Biol. 29 2120Google Scholar

    [5]

    黄志精, 李倩昀, 白婧, 唐国宁 2019 物理学报 68 110503Google Scholar

    Huang Z J, Li Q Y, Bai J, Tang G N 2019 Acta Phys. Sin. 68 110503Google Scholar

    [6]

    Qian Y, Gao H Y, Yao C G, Cui X H, Ma J 2018 Chin. Phys. B 27 108902Google Scholar

    [7]

    Turing A M 1952 Philos. Trans. R. Soc. London, Ser. B 237 37Google Scholar

    [8]

    Guiu-Souto J, Carballido-Landeira J, Munuzuri A P 2012 Phys. Rev. E 85 056205Google Scholar

    [9]

    Epstein I R, Berenstein I B, Dolnik M, Vanag V K, Yang L F, Zhabotinsky A M 2008 Phil. Trans. R. Soc. A 366 397Google Scholar

    [10]

    张荣培, 王震, 王语, 韩子健 2018 物理学报 67 050503Google Scholar

    Zhang R P, Wang Z, Wang Y, Han Z J 2018 Acta Phys. Sin. 67 050503Google Scholar

    [11]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303Google Scholar

    [12]

    Yang L F, Epstein I R 2004 Phys. Rev. E 69 026211Google Scholar

    [13]

    Liu F C, He Y F, Pan Y Y 2010 Commun. Theor. Phys. 53 971Google Scholar

    [14]

    Catlla A J, McNamara A, Topaz C M 2012 Phys. Rev. E 85 026215Google Scholar

    [15]

    白占国, 刘富成, 董丽芳 2015 物理学报 64 210505Google Scholar

    Bai Z G, Liu F C, Dong L F 2015 Acta Phys. Sin. 64 210505Google Scholar

    [16]

    白占国, 董丽芳, 李永辉, 范伟丽 2011 物理学报 60 118201Google Scholar

    Bai Z G, Dong L F, Li Y H, Fan W L 2011 Acta Phys. Sin. 60 118201Google Scholar

    [17]

    李新政, 白占国, 李燕 2019 物理学报 68 068201Google Scholar

    Li X Z, Bai Z G, Li Y 2019 Acta Phys. Sin. 68 068201Google Scholar

    [18]

    李新政, 白占国, 李燕, 赵昆, 贺亚峰 2013 物理学报 62 220503Google Scholar

    Li X Z, Bai Z G, Li Y, Zhao K, He Y F 2013 Acta Phys. Sin. 62 220503Google Scholar

    [19]

    Gambino G, Lombardo M C, Sammartino M, Sciacca V 2013 Phys. Rev. E 88 042925Google Scholar

    [20]

    Biancalani T, Fanelli D, Di Patti F 2010 Phys. Rev. E 81 046215Google Scholar

    [21]

    Berenstein I, Munuzuri A P, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2008 Phys. Rev. E 78 025101Google Scholar

    [22]

    Li J, Wang H L, Ouyang Q 2014 Chaos 24 023115Google Scholar

    [23]

    Berenstein I, Yang L, Dolnik M, Zhabotinsky A M, Epstein I R 2003 Phys. Rev. Lett. 91 058302Google Scholar

    [24]

    Feng F, Yan J, Liu F C, He Y F 2016 Chin. Phys. B 25 104702Google Scholar

    [25]

    Li C X, Dong L F, Feng J Y, Huang Y P 2019 Phys. Plasmas 26 023505Google Scholar

    [26]

    Sun H Y, Dong L F, Fan W L, Mi Y L, Liu B B, Huang J Y, Li C X, Pan Y Y 2018 Phys. Plasmas 25 123511Google Scholar

    [27]

    Han R, Dong L F, Huang J Y, Sun H Y, Liu B B, Mi Y L 2019 Chin. Phys. B 28 075204Google Scholar

  • [1] Liu Ya-Hui, Dong Meng-Fei, Liu Fu-Cheng, Tian Miao, Wang Shuo, Fan Wei-Li. Oscillatory Turing patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2021, 70(15): 158201. doi: 10.7498/aps.70.20201710
    [2] Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai. Numerical simulation of gas-liquid two-phase flow in gas lift system. Acta Physica Sinica, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [3] Li Zhi-Xuan, Yue Ming-Xin, Zhou Guan-Qun. Three-dimensional numerical simulation of electromagnetic diffusion problem and magnetization effects. Acta Physica Sinica, 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [4] Zhou Guang-Yu, Chen Li, Zhang Hong-Yan, Cui Hai-Hang. Research on diffusiophoresis of self-propulsion Janus particles based on lattice Boltzmann method. Acta Physica Sinica, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [5] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [6] Bai Zhan-Guo, Liu Fu-Cheng, Dong Li-Fang. Numerical simulations of hexagonal grid state patterns. Acta Physica Sinica, 2015, 64(21): 210505. doi: 10.7498/aps.64.210505
    [7] Liu Le-Zhu, Zhang Ji-Qian, Xu Gui-Xia, Liang Li-Si, Wang Mao-Sheng. A chaotic secure communication method based on chaos systems partial series parameter estimation. Acta Physica Sinica, 2014, 63(1): 010501. doi: 10.7498/aps.63.010501
    [8] Bai Zhan-Guo, Li Xin-Zheng, Li Yan, Zhao Kun. Numerical analysis on multi-armed spiral patterns in gas discharge system. Acta Physica Sinica, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [9] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [10] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [11] Yin Zeng-Qian, Zhao Pan-Pan, Dong Li-Fang, Fang Tong-Zhen. Numerical simulation of reaction-diffusion process of air plasma with a plasma source in open atmospheric environment. Acta Physica Sinica, 2011, 60(2): 025206. doi: 10.7498/aps.60.025206
    [12] Bai Zhao-Guo, Dong Li-Fang, Li Yong-Hui, Fan Wei-Li. Superlattice patterns in a coupled two-layer Lengel-Epstein model. Acta Physica Sinica, 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [13] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [14] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [15] Deng Yi-Xin, Tu Cheng-Hou, Lü Fu-Yun. Study of self-similar pulse nonlinear polarization rotation mode-locked fiber laser. Acta Physica Sinica, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [16] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [17] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] Zhu Peng-Fei, Qian Lie-Jia, Xue Shao-Lin, Lin Zun-Qi. Numerical studies of characteristics and the design of 1PW optical parametric chirped pulse amplifier for the “Shenguang-Ⅱ” facility. Acta Physica Sinica, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
    [19] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
    [20] ZHANG XU, SHEN KE. THE TRANSVERSE PATTERN OF LASER OSCILLATION OUTPUT IN A RING CAVITY AND THE TRANSITION TO OPTICAL TURBULENCE. Acta Physica Sinica, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
Metrics
  • Abstract views:  6377
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2019
  • Accepted Date:  31 October 2019
  • Published Online:  20 January 2020

/

返回文章
返回