Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Control of supercontinuum generation from filamentation of shaped femtosecond laser pulses

Chang Jun-Wei Zhu Rui-Han Zhang Lan-Zhi Xi Ting-Ting Hao Zuo-Qiang

Citation:

Control of supercontinuum generation from filamentation of shaped femtosecond laser pulses

Chang Jun-Wei, Zhu Rui-Han, Zhang Lan-Zhi, Xi Ting-Ting, Hao Zuo-Qiang
PDF
HTML
Get Citation
  • Supercontinuum (SC), as one of the most spectacular phenomena occurring in the nonlinear process of intense femtosecond laser-material interaction, has attracted considerable interest. The broadband SC sources have a variety of applications including the spectroscopy, fluorescence microscopy, remote sensing, and generation of few-cycle pulses. Over the last few decades, the SC has been extensively investigated in various optical media, including liquid, gas, and solid. Especially, ultrabroadband SC sources have achieved remarkable development in the photonic crystal and micro-structured fibers. Even so, the generation of the SC with high brightness, high spatiotemporal coherence and good maneuverability, is still a challenging topic. The SC generation from femtosecond filamentation is a unique white light source with high pulse energy, high brightness and high spatiotemporal coherence, whose spectral range spans from ultraviolet to mid-infrared. In recent years, numerous studies have been conducted to optimize the filamentation and SC. The control of filamentation such as the filament length, number and position, as well as the generation of the ultra-broadband spectrum with high spectral energy density has been realized. To date, the optimal control of SC has been realized by the spatial modulation or time-domain shaping of the femtosecond laser pulse. However, there is no report on the control of SC generation and filamentation by spatiotemporally modulating the femtosecond laser pulses as far as we know. In this work, a spatiotemporal modulation for the femtosecond laser pulse is proposed, which combines the spatial modulation by using microlens array (MLA) and the laser pulse shaping based on liquid crystal spatial light modulator. We investigate the control of the SC generation from the filamentation of the spatiotemporally modulated femtosecond laser pulses in fused silica by using the feedback optimal control based on genetic algorithm. In our experiments, with the increase of the iterative generation, the cut-off wavelength in the blue-side extension of the SC becomes shorter gradually, and the spectral intensity of the SC increases significantly. After the eighth iteration, the increase of the spectral intensity slows. With the number of iterations increasing further, the intensity and broadening of SC spectrum will no longer apparently change. Hence, the feedback optimization control of spectral intensity of SC is realized, and the SC with controllable spectral intensity in a certain range is obtained. The maximum intensity variation of SC is more than three times. By integrating the spectral intensities of SC for different iterative generations, we characterize the increase trend of SC conversion efficiency. During the first few iterations, the conversion efficiency increases rapidly. Then it increases slowly after eighth generations and reaches its maximum after several generations (10th generation). The conversion efficiency has a similar evolution to the spectral intensity of the SC. To explain the physical mechanism, the initial envelope of the shaping pulse with typical iteration generation is calculated. It can be concluded that the spatial modulation of MLA allows for higher incident laser energy and for more filaments’ generation, which increases the energy of SC radiation directly. The peak intensity and envelope distribution of time domain pulse are the main factors affecting the spectral intensity and broadening the SC.
      Corresponding author: Xi Ting-Ting, ttxi@ucas.ac.cn ; Hao Zuo-Qiang, zqhao@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774038, 11874056, 11474039, 11274053) and the Taishan Scholar Project of Shandong Province, China
    [1]

    Chin S L, Hosseini S A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V P, Kosareva O G, Schroeder H 2005 Can. J. Phys. 83 863Google Scholar

    [2]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584Google Scholar

    [3]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592Google Scholar

    [4]

    Petersen C R, Prtljaga N, Farries M, Ward J, Napier B, Lloyd G R, Nallala J, Stone N, Bang O 2018 Opt. Lett. 43 999Google Scholar

    [5]

    Dupont S, Petersen C, Thøgersen J, Agger C, Bang O, Keiding S R 2012 Opt. Express 20 4887Google Scholar

    [6]

    Poudel C, Kaminski C F 2019 J. Opt. Soc. Am. B 36 A139Google Scholar

    [7]

    Riedle E, Bradler M, Wenninger M, Sailer C F, Pugliesi I 2013 Faraday Discuss. 163 139Google Scholar

    [8]

    Petersen C R, Moselund P M, Huot L, Hooper L, Bang O 2018 Infrared Phys. Technol. 91 182Google Scholar

    [9]

    Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Mysyrowicz A, Sauerbrey R 2003 Science 301 61Google Scholar

    [10]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [11]

    Price J H V, Feng X, Heidt A M, Brambilla G, Horak P, Poletti F, Ponzo G, Petropoulos P, Petrovich M, Shi J, Ibsen M, Loh W H, Rutt H N, Richardson D J 2012 Opt. Fiber Technol. 18 327Google Scholar

    [12]

    Labruyère A, Tonello A, Couderc V, Huss G, Leproux P 2012 Opt. Fiber Technol. 18 375Google Scholar

    [13]

    Lefort C, O’Connor R P, Blanquet V, Magnol L, Kano H, Tombelaine V, Lévêque P, Couderc V, Leproux P 2016 J. Biophotonics 9 709Google Scholar

    [14]

    Budriunas R, Stanislauskas T, Adamonis J, Aleknavi Cius A, Veitas G, Gadonas D, Balickas S, Michailovas A, Varanavicius A 2017 Opt. Express 25 5797Google Scholar

    [15]

    Hakala T, Suomalainen J, Kaasalainen S, Chen Y 2012 Opt. Express 20 7119Google Scholar

    [16]

    Chin S, Petit S, Borne F, Miyazaki K 1999 Jpn. J. Appl. Phys. 38 L126Google Scholar

    [17]

    Alfano R R 2006 The Supercontinuum Laser Source: Fundamentals with Updated References (New York: Springer) pp473–480

    [18]

    Garejev N, Tamošauskas G, Dubietis A 2017 J. Opt. Soc. Am. B 34 88Google Scholar

    [19]

    Dubietis A, Tamošauskas G, Šuminas R, Jukna V, Couairon A 2017 Lith. J. Phys. 57 113

    [20]

    Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar

    [21]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar

    [22]

    Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747Google Scholar

    [23]

    Li D W, Xi T T, Zhang L Z, Tao H Y, Gao X, Lin J Q, Hao Z Q 2017 Opt. Express 25 23910Google Scholar

    [24]

    Li D W, Zhang L Z, Xi T T, Hao Z Q 2019 J. Opt. 21 065501Google Scholar

    [25]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [26]

    Weiner A M 2011 Opt. Commun. 284 3669Google Scholar

    [27]

    Mendoza-Yero O, Carbonell-Leal M, Doñate-Buendía C, Mínguez-Vega G, Lancis J 2016 Opt. Express 24 15307

    [28]

    Hong Z F, Zhang Q B, Ali Rezvani S, Lan P F, Lu P X 2016 Opt. Express 24 4029Google Scholar

    [29]

    Li P P, Cai M Q, Lü J Q, Wang D, Liu G G, Qian S X, Li Y, Tu C, Wang H T 2016 AIP Advances 6 125103Google Scholar

    [30]

    Heck G, Sloss J, Levis R J 2006 Opt. Commun. 259 216Google Scholar

    [31]

    Chen A M, Li S Y, Qi H X, Jiang Y F, Hu Z, Huang X R, Jin M X 2017 Opt. Commun. 383 144Google Scholar

    [32]

    常峻巍, 许梦宁, 王頔, 朱瑞晗, 奚婷婷, 张兰芝, 李东伟, 郝作强 2019 光学学报 39 0126021Google Scholar

    Chang J W, Xu M N, Wang D, Zhu R H, Xi T T, Zhang L D, Li D W, Hao Z Q 2019 Acta Opt. Sin. 39 0126021Google Scholar

    [33]

    Zhdanova A A, Shen Y J, Thompson J V, Scully M O, Yakovlev V V, Sokolov A V 2018 J. Mod. Opt. 65 1332Google Scholar

    [34]

    Ackermann R, Salmon E, Lascoux N, Kasparian J, Rohwetter P, Stelmaszczyk K, Li S, Lindinger A, Wöste L, Béjot P 2006 Appl. Phys. Lett. 89 171117Google Scholar

    [35]

    Thompson J V, Zhokhov P A, Springer M M, Traverso A J, Yakovlev V V, Zheltikov A M, Sokolov A V, Scully M O 2017 Sci. Rep. 7 43367Google Scholar

    [36]

    Zhan L D, Xu M N, Xi T T, Hao Z Q 2018 Phys. Plasmas 25 103102Google Scholar

    [37]

    Xu M N, Zhan L D, Xi T T, Hao Z Q 2019 J. Opt. Soc. Am. B 36 G6Google Scholar

  • 图 1  实验装置示意图(M, 800 nm高反镜; G, 光栅; CL, 柱面镜; LC-SLM, 液晶空间光调制器; MLA, 微透镜阵列; L, 平凸透镜; FS, 熔融石英; DM, 二向色镜; IS, 积分球)

    Figure 1.  Schematic diagram of experimental setup. M, 800 nm HR mirror; G, grating; CL, cylindrical lens; LC-SLM, liquid crystal spatial light modulator; MLA, microlens array; L, plano-convex lens; FS, fused silica; DM, dichroic mirror; IS, integrating sphere.

    图 2  (a)时空调制飞秒脉冲成丝的超连续辐射随迭代代数的演化; (b)典型迭代代数对应的超连续辐射光谱

    Figure 2.  (a) Evolution trend of supercontinuum generation by the spatiotemporal modulation femtosecond pulse filamentation with the increasing of iterative generation; (b) supercontinuum spectra of several typical iterative generations.

    图 3  超连续辐射光谱积分(400−700 nm波段)随迭代代数的变化

    Figure 3.  Spectral intensity integration (400−700 nm) of the supercontinuum as a function of the iterative generation.

    图 4  典型迭代代数对应整形激光脉冲初始包络, 图中迭代代数依次为(a) 1, (b) 3, (c) 8和(d) 17

    Figure 4.  Initial envelopes of shaped laser pulse with typical iteration generations of (a) 1, (b) 3, (c) 8 and (d) 17, respectively.

  • [1]

    Chin S L, Hosseini S A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V P, Kosareva O G, Schroeder H 2005 Can. J. Phys. 83 863Google Scholar

    [2]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584Google Scholar

    [3]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592Google Scholar

    [4]

    Petersen C R, Prtljaga N, Farries M, Ward J, Napier B, Lloyd G R, Nallala J, Stone N, Bang O 2018 Opt. Lett. 43 999Google Scholar

    [5]

    Dupont S, Petersen C, Thøgersen J, Agger C, Bang O, Keiding S R 2012 Opt. Express 20 4887Google Scholar

    [6]

    Poudel C, Kaminski C F 2019 J. Opt. Soc. Am. B 36 A139Google Scholar

    [7]

    Riedle E, Bradler M, Wenninger M, Sailer C F, Pugliesi I 2013 Faraday Discuss. 163 139Google Scholar

    [8]

    Petersen C R, Moselund P M, Huot L, Hooper L, Bang O 2018 Infrared Phys. Technol. 91 182Google Scholar

    [9]

    Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Mysyrowicz A, Sauerbrey R 2003 Science 301 61Google Scholar

    [10]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [11]

    Price J H V, Feng X, Heidt A M, Brambilla G, Horak P, Poletti F, Ponzo G, Petropoulos P, Petrovich M, Shi J, Ibsen M, Loh W H, Rutt H N, Richardson D J 2012 Opt. Fiber Technol. 18 327Google Scholar

    [12]

    Labruyère A, Tonello A, Couderc V, Huss G, Leproux P 2012 Opt. Fiber Technol. 18 375Google Scholar

    [13]

    Lefort C, O’Connor R P, Blanquet V, Magnol L, Kano H, Tombelaine V, Lévêque P, Couderc V, Leproux P 2016 J. Biophotonics 9 709Google Scholar

    [14]

    Budriunas R, Stanislauskas T, Adamonis J, Aleknavi Cius A, Veitas G, Gadonas D, Balickas S, Michailovas A, Varanavicius A 2017 Opt. Express 25 5797Google Scholar

    [15]

    Hakala T, Suomalainen J, Kaasalainen S, Chen Y 2012 Opt. Express 20 7119Google Scholar

    [16]

    Chin S, Petit S, Borne F, Miyazaki K 1999 Jpn. J. Appl. Phys. 38 L126Google Scholar

    [17]

    Alfano R R 2006 The Supercontinuum Laser Source: Fundamentals with Updated References (New York: Springer) pp473–480

    [18]

    Garejev N, Tamošauskas G, Dubietis A 2017 J. Opt. Soc. Am. B 34 88Google Scholar

    [19]

    Dubietis A, Tamošauskas G, Šuminas R, Jukna V, Couairon A 2017 Lith. J. Phys. 57 113

    [20]

    Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar

    [21]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar

    [22]

    Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747Google Scholar

    [23]

    Li D W, Xi T T, Zhang L Z, Tao H Y, Gao X, Lin J Q, Hao Z Q 2017 Opt. Express 25 23910Google Scholar

    [24]

    Li D W, Zhang L Z, Xi T T, Hao Z Q 2019 J. Opt. 21 065501Google Scholar

    [25]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [26]

    Weiner A M 2011 Opt. Commun. 284 3669Google Scholar

    [27]

    Mendoza-Yero O, Carbonell-Leal M, Doñate-Buendía C, Mínguez-Vega G, Lancis J 2016 Opt. Express 24 15307

    [28]

    Hong Z F, Zhang Q B, Ali Rezvani S, Lan P F, Lu P X 2016 Opt. Express 24 4029Google Scholar

    [29]

    Li P P, Cai M Q, Lü J Q, Wang D, Liu G G, Qian S X, Li Y, Tu C, Wang H T 2016 AIP Advances 6 125103Google Scholar

    [30]

    Heck G, Sloss J, Levis R J 2006 Opt. Commun. 259 216Google Scholar

    [31]

    Chen A M, Li S Y, Qi H X, Jiang Y F, Hu Z, Huang X R, Jin M X 2017 Opt. Commun. 383 144Google Scholar

    [32]

    常峻巍, 许梦宁, 王頔, 朱瑞晗, 奚婷婷, 张兰芝, 李东伟, 郝作强 2019 光学学报 39 0126021Google Scholar

    Chang J W, Xu M N, Wang D, Zhu R H, Xi T T, Zhang L D, Li D W, Hao Z Q 2019 Acta Opt. Sin. 39 0126021Google Scholar

    [33]

    Zhdanova A A, Shen Y J, Thompson J V, Scully M O, Yakovlev V V, Sokolov A V 2018 J. Mod. Opt. 65 1332Google Scholar

    [34]

    Ackermann R, Salmon E, Lascoux N, Kasparian J, Rohwetter P, Stelmaszczyk K, Li S, Lindinger A, Wöste L, Béjot P 2006 Appl. Phys. Lett. 89 171117Google Scholar

    [35]

    Thompson J V, Zhokhov P A, Springer M M, Traverso A J, Yakovlev V V, Zheltikov A M, Sokolov A V, Scully M O 2017 Sci. Rep. 7 43367Google Scholar

    [36]

    Zhan L D, Xu M N, Xi T T, Hao Z Q 2018 Phys. Plasmas 25 103102Google Scholar

    [37]

    Xu M N, Zhan L D, Xi T T, Hao Z Q 2019 J. Opt. Soc. Am. B 36 G6Google Scholar

  • [1] Cao Qi-Qi, Liu Yue, Wang Shuo. Numerical study of effect of plasma rotation and feedback control on resistive wall mode in ITER. Acta Physica Sinica, 2021, 70(4): 045201. doi: 10.7498/aps.70.20201391
    [2] Zhang Yun, Lin Shuang, Zhang Yun-Feng, Zhang He, Chang Ming-Ying, Yu Miao, Wang Ya-Qiu, Cai Xiao-Ming, Jiang Yuan-Fei, Chen An-Min, Li Su-Yu, Jin Ming-Xing. Spatial distribution of nitrogen fluorescence emission induced by femtosecond laser filamentation in air. Acta Physica Sinica, 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [3] Fu Li-Li, Chang Jun-Wei, Chen Jia-Qi, Zhang Lan-Zhi, Hao Zuo-Qiang. Filamentation and supercontinuum emission generated from flattened femtosecond laser beam by use of axicon in fused silica. Acta Physica Sinica, 2020, 69(4): 044202. doi: 10.7498/aps.69.20191350
    [4] Fan Li-Ming, Lü Ming-Tao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directed transport efficiency of feedback-control ratchet. Acta Physica Sinica, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [5] Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Temperature and electron density in femtosecond filament-induced Cu plasma. Acta Physica Sinica, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [6] Qin Tian-Qi, Wang Fei, Yang Bo, Luo Mao-Kang. Transport properties of fractional coupled Brownian motors in ratchet potential with feedback. Acta Physica Sinica, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [7] Gao Xun, Du Chuang, Li Cheng, Liu Lu, Song Chao, Hao Zuo-Qiang, Lin Jing-Quan. Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy. Acta Physica Sinica, 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [8] Liu Xian, Ma Bai-Wang, Liu Hui-Jun. Performance of closed-loop control of epileptiform spikes in neural mass models. Acta Physica Sinica, 2013, 62(2): 020202. doi: 10.7498/aps.62.020202
    [9] Zeng Zhe-Zhao. Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network. Acta Physica Sinica, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [10] Huang Li-Lian, Xin Fang, Wang Lin-Yu. Circuit implementation and control of a new fractional-order hyperchaotic system. Acta Physica Sinica, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [11] Shi Zheng-Ping. Simple chaotic oscillator’s chaos behavior and its feedback control circuit design. Acta Physica Sinica, 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [12] Xiao Han, Tang Jia-Shi, Liang Cui-Xiang. Saddle-node bifurcation control of a spring pendulum with single-frequency excitation. Acta Physica Sinica, 2009, 58(5): 2989-2995. doi: 10.7498/aps.58.2989
    [13] Lin Min, Huang Yong-Mei, Fang Li-Min. The feedback control of stochastic resonance in bistable system. Acta Physica Sinica, 2008, 57(4): 2041-2047. doi: 10.7498/aps.57.2041
    [14] Yin Xiao-Zhou, Liu Yong. Suppression of spiral wave in the excitable media by using intermittent feedback scheme. Acta Physica Sinica, 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [15] Tang Jia-Shi, Xiao Han. Amplitude control of limit cycle of coupled van der Pol oscillator. Acta Physica Sinica, 2007, 56(1): 101-105. doi: 10.7498/aps.56.101
    [16] Du Lin, Xu Wei, Jia Fei-Lei, Li Shuang. Control of gyro system based on lowpass filter function feedback. Acta Physica Sinica, 2007, 56(7): 3813-3819. doi: 10.7498/aps.56.3813
    [17] Chen Xuan, Gao Zi-You, Zhao Xiao-Mei, Jia Bin. Study on the two-lane feedback controled car-following model. Acta Physica Sinica, 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [18] Liu Su-Hua, Tang Jia-Shi. Linear feedback control of Hopf bifurcation in Langford system. Acta Physica Sinica, 2007, 56(6): 3145-3151. doi: 10.7498/aps.56.3145
    [19] Li Kun, Xu Miao-Hua, Jin Zhan, Liu Yun-Quan, Wang Zhao-Hua, Ling Wei-Jun, Zhang Jie. Polarization dependence of third-harmonics and spectral modulation properties of supercontinuum radiation from plasmas channels generated by femtosecond laser pulses propagation in air. Acta Physica Sinica, 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [20] YUE LI-JUAN, CHEN YAN-YAN, PENG JIAN-HUA. A CIRCUIT EXPERIMENT FOR CONTROLLING HYPERCHAOS BY MEANS OF PROPORTIONAL PERIODIC PULSE PERTURBATION TO THE SYSTEM VARIABLES. Acta Physica Sinica, 2001, 50(11): 2097-2102. doi: 10.7498/aps.50.2097
Metrics
  • Abstract views:  7555
  • PDF Downloads:  116
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2019
  • Accepted Date:  24 October 2019
  • Published Online:  05 February 2020

/

返回文章
返回