Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics

Zuo Fu-Chang Mei Zhi-Wu Deng Lou-Lou Shi Yong-Qiang He Ying-Bo Li Lian-Sheng Zhou Hao Xie Jun Zhang Hai-Li Sun Yan

Citation:

Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics

Zuo Fu-Chang, Mei Zhi-Wu, Deng Lou-Lou, Shi Yong-Qiang, He Ying-Bo, Li Lian-Sheng, Zhou Hao, Xie Jun, Zhang Hai-Li, Sun Yan
PDF
HTML
Get Citation
  • On November 10, 2016, China launched an X-ray pulsar navigation test satellite (XPNAV-1) to investigate the X-ray pulsar navigation technology, and a lot of scientific observation data have been obtained. The X-ray grazing incidence optics is a critical component of the focusing pulsar telescope. It plays an important role in increasing the effective area and enhancing the sensitivity of the telescope. It is also the first grazing incidence optics verified in orbit in China. According to the characteristic that the times of arrival (TOA) of X-ray photons are measured in pulsar navigation, the grazing incidence focusing optics based on single-reflection paraboloid mirror is designed, and manufacturable mirror design parameters are obtained through theoretical calculation and derivation. The theoretical effective area of the designed optics is 15.6 cm2 at 1 keV. The designed optics is then simulated to evaluate its focusing performance. It meets the focusing requirement in the full field of view. The electroforming nickel replication process used for manufacturing the mirrors for XMM-Newton and eRosita missions is investigated. A super-smooth mandrel is firstly fabricated and used for follow-up replication. An about-100 nm-thick gold layer is deposited on the mandrel, and serves as the reflection and release layer of the mirror. The nickel substrate of the mirror is electroformed on the gold layer. The mirror is finally obtained by releasing the nickel and gold layer from the mandrel. The patterns and roughness of the mandrel are then replicated onto the inner surface of the mirror. The 4-layered mirror is fabricated for the optics. The reflectivity for each layer of the 4-layered mirror is then measured with a dedicated facility on 4B7B beamline of BSRF. The effective area of the optics based on the above-measured reflectivity is 13.2 cm2 at 1 keV. Finally, according to the in-orbit observation data, the effective area of the optical system is evaluated to be a typical value of 4.22 cm2 at 1 keV, which is less than the ground-tested value. The reason for this is analyzed and it turns out to be due to the thermal deformation of mechanical structure and contamination of the mirrors. Therefore, in our future work, we will strictly control the environmental factors and implement space environmental adaptability design, while increasing the accuracy of the optics.
      Corresponding author: Zuo Fu-Chang, zfch-2004@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0503300)
    [1]

    Paul S R, Kent S W, Michael N L, Michael T W 2006 J. Guid. Control Dynam. 29 1Google Scholar

    [2]

    Keith C G, Zaven A, Takashi O 2012 Proc. SPIE 8443 844313Google Scholar

    [3]

    Jason W M, Munther A H, Luke M B W, Jennifer E V, Samuel R P, Sean R S, Wayne H Y, Zaven A, Paul S R, Kent S W, Ronald J L, Keith C G 2015 AIAA Guidance, Navigation, and Control Conference Kissimmee, USA, January 5–9, 2015 AIAA 2015-0865

    [4]

    Xiong K, Wei C L, Liu L D 2016 Acta Astronaut. 128 473Google Scholar

    [5]

    王奕迪 2012 博士学位论文 (长沙: 国防科技大学)

    Wang Y D 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [6]

    Craig M, Jack S, Teruaki E, Michael L, Beverly J L 2018 Proc. SPIE 10699 106991VGoogle Scholar

    [7]

    Takashi O, Yang S, Erin R B, Teruaki E, Larry O, Richard K, Larry L, John K, Sean F, Ai N, Steven J K, Zaven A, Keith G 2016 Proc. SPIE 9905 99054XGoogle Scholar

    [8]

    Luke M B W, Jason W M, Munther A H, Samuel R P, Sean R S, Wayne H Y, Paul S R, Michael T W, Matthew K, Kent S W, Zaven A, Keith C G, Lucas G, Ismael C, Paul D, Ben S, Andrew L 2018 Proceedings of SpaceOps Conference Marseille, France, May 28–June 1, 2018 p2538

    [9]

    李连升, 邓楼楼, 梅志武, 吕政欣, 刘继红 2018 机械工程学报 54 23Google Scholar

    Li L S, Deng L L, Mei Z W, Lv Z X, Liu J H 2018 JME 54 23Google Scholar

    [10]

    周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰 2018 物理学报 67 050701Google Scholar

    Zhou Q Y, Wei Z Q, Jiang K, Deng L L, Liu S W, Ji J F, Ren H F, Wang Y D, Ma G F 2018 Acta Phys. Sin. 67 050701Google Scholar

    [11]

    Deng L L, Mei Z W, Li L S, Wang Y, Shi H, Xiong K, Lv Z X, Mo Y N, Wang L, Zuo F C, Chen J W, Shi Y Q, Xu C 2017 Proc. IAC 7 4347

    [12]

    Brian R, Ron E, Darell E, Misha G, Jeffery K, Steve O D, Chet S, Martin W 2004 Proc. SPIE 5168 0277Google Scholar

    [13]

    王永刚, 崔天刚, 马文生, 陈斌, 陈波 2011 光学精密工程 19 743Google Scholar

    Wang Y G, Cui T G, Ma W S, Chen B, Chen B 2011 Optics and Prec. Eng. 19 743Google Scholar

    [14]

    赵大春 2016 博士学位论文 (北京: 中国科学院大学)

    Zhao D C 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [15]

    Liao Y Y, Shen Z X, Huang Q S, Wang Z S 2017 Proc. SPIE 10399 103990LGoogle Scholar

    [16]

    Shen Z X, Yu J, Ma B, Zhang Z, Huang Q S, Wang X Q, Wang K, Zuo F C, Lü Z X, Wang Z S 2018 Proc. SPIE 10699 106991BGoogle Scholar

    [17]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 物理学报 67 200701Google Scholar

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701Google Scholar

    [18]

    Sheng L Z, Zhao B S, Qiang P F, Liu D 2016 Proc. SPIE 10328 103280MGoogle Scholar

    [19]

    孔繁星 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Kong F X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [20]

    Zuo F C, Mei Z W, Ma T, Deng L L, Shi Y Q, Li L S 2016 Proc. SPIE 9796 97961OGoogle Scholar

    [21]

    Zuo F C, Deng L L, Mei Z W, Li L S, Lü Z X 2014 Proc. SPIE 9250 925004Google Scholar

    [22]

    Peter F, Heinrich B, Bernd B, Wolfgang B, Vadim B, Konrad D, Josef E, Michael F, Roland G, Gisela H, Benedikt M, Elmar P, Peter P, Christian R, Reiner S 2012 Proc. SPIE 8443 84431SGoogle Scholar

    [23]

    David H L, Norbert S, Fred A J 2012 Opt. Eng. 51 011009Google Scholar

    [24]

    石永强, 邓楼楼, 吕政欣, 梅志武 2018 天文学报 59 44Google Scholar

    Shi Y Q, Deng L L, Lü Z X, Mei Z W 2018 Acta Astronomica Sin. 59 44Google Scholar

    [25]

    Odell S L, Elsner R F, Kolodziejczak J J, Weisskopf M C, Hughes J P , Speybroeck L P V 1992 Proc. SPIE 1742 171Google Scholar

    [26]

    Kellogg E, Chartas G, Graessle D E, Hughes J P, Speybroeck L P V, Zhao P, Weisskopf M C, Elsner R F, Odell S L 1992 Proc. SPIE 1742 183Google Scholar

  • 图 1  单层反射镜光路图

    Figure 1.  Schematic of optical path of a parabolic mirror.

    图 2  相邻反射镜之间的关系

    Figure 2.  Relationship between adjacent mirrors.

    图 3  反射镜加工工艺流程

    Figure 3.  Fabrication process for mirrors.

    图 4  芯轴斜率误差

    Figure 4.  Measured slope profile residual of mandrel.

    图 5  (a)复制芯轴; (b)复制的反射镜; (c)光学系统; (d)发射前的光学系统

    Figure 5.  (a) Mandrel; (b) mirror replicated; (c) optics assembly; (d) optics on the satellite.

    图 6  (a) 反射率测试系统示意图; (b) 反射率测试系统实物图, 其中1, 光阑孔及调整装置; 2, 标准探测器及调整装置; 3, 反射镜调整装置; 4, 测试探测器及调整装置; 5, 观察窗

    Figure 6.  (a) Schematic of reflectivity measurement system; (b) photo of reflectivity measurement system, where, 1, aperture and its adjusting device; 2, standard detector and its adjusting device; 3, mirror adjusting device; 4, measurement detector and its adjusting device; 5, observation window.

    图 7  实测反射率

    Figure 7.  Measured reflectivity.

    图 8  基于实测反射率与理论反射率的有效面积

    Figure 8.  Effective areas based on measured and theoretical reflectivity.

    图 9  Crab脉冲星流量时变特性

    Figure 9.  Time-varying characteristics of Crab pulsar flux.

    图 10  Crab脉冲星能谱特性

    Figure 10.  Spectra of Crab pulsar flux.

    图 11  基于观测数据评价的有效面积曲线

    Figure 11.  Evaluated effective area based on in-orbit data.

    表 1  光学系统设计参数

    Table 1.  Designed parameters of the optics.

    项目数值
    能量范围/keV0.2—10
    视场/arcmin2ω = 15
    焦距/mm1100
    掠入射角范围/(°)0.98—1.25
    反射镜长度/mm120
    反射镜厚度/mm0.5
    几何面积/cm230
    DownLoad: CSV

    表 2  不同视场下的聚焦情况

    Table 2.  Focusing performance at different FOVs.

    视场/(°)像斑点列图质心位置/mm内环半径/mm外环半径/mm
    0000.005
    0.050.990.951.03
    0.11.961.842.07
    0.1252.432.282.58
    DownLoad: CSV
  • [1]

    Paul S R, Kent S W, Michael N L, Michael T W 2006 J. Guid. Control Dynam. 29 1Google Scholar

    [2]

    Keith C G, Zaven A, Takashi O 2012 Proc. SPIE 8443 844313Google Scholar

    [3]

    Jason W M, Munther A H, Luke M B W, Jennifer E V, Samuel R P, Sean R S, Wayne H Y, Zaven A, Paul S R, Kent S W, Ronald J L, Keith C G 2015 AIAA Guidance, Navigation, and Control Conference Kissimmee, USA, January 5–9, 2015 AIAA 2015-0865

    [4]

    Xiong K, Wei C L, Liu L D 2016 Acta Astronaut. 128 473Google Scholar

    [5]

    王奕迪 2012 博士学位论文 (长沙: 国防科技大学)

    Wang Y D 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [6]

    Craig M, Jack S, Teruaki E, Michael L, Beverly J L 2018 Proc. SPIE 10699 106991VGoogle Scholar

    [7]

    Takashi O, Yang S, Erin R B, Teruaki E, Larry O, Richard K, Larry L, John K, Sean F, Ai N, Steven J K, Zaven A, Keith G 2016 Proc. SPIE 9905 99054XGoogle Scholar

    [8]

    Luke M B W, Jason W M, Munther A H, Samuel R P, Sean R S, Wayne H Y, Paul S R, Michael T W, Matthew K, Kent S W, Zaven A, Keith C G, Lucas G, Ismael C, Paul D, Ben S, Andrew L 2018 Proceedings of SpaceOps Conference Marseille, France, May 28–June 1, 2018 p2538

    [9]

    李连升, 邓楼楼, 梅志武, 吕政欣, 刘继红 2018 机械工程学报 54 23Google Scholar

    Li L S, Deng L L, Mei Z W, Lv Z X, Liu J H 2018 JME 54 23Google Scholar

    [10]

    周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰 2018 物理学报 67 050701Google Scholar

    Zhou Q Y, Wei Z Q, Jiang K, Deng L L, Liu S W, Ji J F, Ren H F, Wang Y D, Ma G F 2018 Acta Phys. Sin. 67 050701Google Scholar

    [11]

    Deng L L, Mei Z W, Li L S, Wang Y, Shi H, Xiong K, Lv Z X, Mo Y N, Wang L, Zuo F C, Chen J W, Shi Y Q, Xu C 2017 Proc. IAC 7 4347

    [12]

    Brian R, Ron E, Darell E, Misha G, Jeffery K, Steve O D, Chet S, Martin W 2004 Proc. SPIE 5168 0277Google Scholar

    [13]

    王永刚, 崔天刚, 马文生, 陈斌, 陈波 2011 光学精密工程 19 743Google Scholar

    Wang Y G, Cui T G, Ma W S, Chen B, Chen B 2011 Optics and Prec. Eng. 19 743Google Scholar

    [14]

    赵大春 2016 博士学位论文 (北京: 中国科学院大学)

    Zhao D C 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [15]

    Liao Y Y, Shen Z X, Huang Q S, Wang Z S 2017 Proc. SPIE 10399 103990LGoogle Scholar

    [16]

    Shen Z X, Yu J, Ma B, Zhang Z, Huang Q S, Wang X Q, Wang K, Zuo F C, Lü Z X, Wang Z S 2018 Proc. SPIE 10699 106991BGoogle Scholar

    [17]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 物理学报 67 200701Google Scholar

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701Google Scholar

    [18]

    Sheng L Z, Zhao B S, Qiang P F, Liu D 2016 Proc. SPIE 10328 103280MGoogle Scholar

    [19]

    孔繁星 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Kong F X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [20]

    Zuo F C, Mei Z W, Ma T, Deng L L, Shi Y Q, Li L S 2016 Proc. SPIE 9796 97961OGoogle Scholar

    [21]

    Zuo F C, Deng L L, Mei Z W, Li L S, Lü Z X 2014 Proc. SPIE 9250 925004Google Scholar

    [22]

    Peter F, Heinrich B, Bernd B, Wolfgang B, Vadim B, Konrad D, Josef E, Michael F, Roland G, Gisela H, Benedikt M, Elmar P, Peter P, Christian R, Reiner S 2012 Proc. SPIE 8443 84431SGoogle Scholar

    [23]

    David H L, Norbert S, Fred A J 2012 Opt. Eng. 51 011009Google Scholar

    [24]

    石永强, 邓楼楼, 吕政欣, 梅志武 2018 天文学报 59 44Google Scholar

    Shi Y Q, Deng L L, Lü Z X, Mei Z W 2018 Acta Astronomica Sin. 59 44Google Scholar

    [25]

    Odell S L, Elsner R F, Kolodziejczak J J, Weisskopf M C, Hughes J P , Speybroeck L P V 1992 Proc. SPIE 1742 171Google Scholar

    [26]

    Kellogg E, Chartas G, Graessle D E, Hughes J P, Speybroeck L P V, Zhao P, Weisskopf M C, Elsner R F, Odell S L 1992 Proc. SPIE 1742 183Google Scholar

  • [1] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] Wu Dan-Dan, Pan Li, Zhou Zhe, Fu Wei-Wei, Zhu Hai-Long, Dong Yue-Fang. Development of NIR-II small animal living fluorescence imaging system. Acta Physica Sinica, 2024, 73(7): 078701. doi: 10.7498/aps.73.20231910
    [3] Chen Cui-Hong, Li Zhan-Kui, Wang Xiu-Hua, Li Rong-Hua, Fang Fang, Wang Zhu-Sheng, Li Hai-Xia. Development of high performance PIN-silicon detector and its application in radioactive beam physical experiment. Acta Physica Sinica, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [4] Lü Ze-Qi, Xie Yan-Zhao, Gou Ming-Yue, Chen Xiao-Yu, Zhou Jin-Shan, Li Mei, Zhou Yi. Development of 200 kV multi-function pulsed radiation system. Acta Physica Sinica, 2021, 70(20): 205206. doi: 10.7498/aps.70.20210583
    [5] Yin Jiao, Xiao Guo-Liang, Chen Cheng-Yuan, Feng Bei-Bin, Zhang Yi-Po, Zhong Wu-Lü. Development and applications of schlieren system for measuring characteristics of supersonic molecular beam. Acta Physica Sinica, 2020, 69(21): 215202. doi: 10.7498/aps.69.20201383
    [6] Zhu Jin-Long,  Zhao Yu-Sheng,  Jin Chang-Qing. Structure and properties of nature clathrate and its application in energy and enviromental science. Acta Physica Sinica, 2019, 68(1): 018203. doi: 10.7498/aps.68.20181639
    [7] Zhao Fang-Jing, Gao Feng, Han Jian-Xin, Zhou Chi-Hua, Meng Jun-Wei, Wang Ye-Bing, Guo Yang, Zhang Shou-Gang, Chang Hong. Miniaturization of physics system in Sr optical clock. Acta Physica Sinica, 2018, 67(5): 050601. doi: 10.7498/aps.67.20172584
    [8] Liu Jun, Chen Bo-Xiong, Xu Guan-Jun, Cui Xiao-Xu, Bai Bo, Zhang Lin-Bo, Chen Long, Jiao Dong-Dong, Wang Tao, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang. Self-reliance and independently developed high-finesse spherical ultrastable optical reference cavity. Acta Physica Sinica, 2017, 66(8): 080601. doi: 10.7498/aps.66.080601
    [9] Xu Neng, Sheng Li-Zhi, Zhang Da-Peng, Chen Chen, Zhao Bao-Sheng, Zheng Wei, Liu Chun-Liang. Development and performance test of dynamic simulation system for X-ray pulsar navigation. Acta Physica Sinica, 2017, 66(5): 059701. doi: 10.7498/aps.66.059701
    [10] Ruan Jun, Wang Ye-Bing, Chang Hong, Jiang Hai-Feng, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang. Progress towards primary frequency standard. Acta Physica Sinica, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [11] Pang Wu-Bin, Cen Zhao-Feng, Li Xiao-Tong, Qian Wei, Shang Hong-Bo, Xu Wei-Cai. The effect of polarization light on optical imaging system. Acta Physica Sinica, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [12] Meng Fei, Cao Shi-Ying, Cai Yue, Wang Gui-Zhong, Cao Jian-Ping, Li Tian-Chu, Fang Zhan-Jun. Study of the femtosecond fiber comb and absolute optical frequency measurement. Acta Physica Sinica, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [13] Zhou Hai-Yang, Zhu Xiao-Dong, Zhan Ru-Juan. Fabrication and performance of CVD diamond radiation detector. Acta Physica Sinica, 2010, 59(3): 1620-1624. doi: 10.7498/aps.59.1620
    [14] Yang Ya-Liang, Ding Zhi-Hua, Wang Kai, Wu Ling, Wu Lan. Development of full-field optical coherence tomography system. Acta Physica Sinica, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [15] Xiang Yong-Chun, Gong Jian, Li Wei, Bian Zhi-Shang, Hao Fan-Hua, Wang Hong-Xia, Wang Qian, Xiong Zong-Hua. Development of a system of measuring 37Ar by spectrum method. Acta Physica Sinica, 2008, 57(2): 784-789. doi: 10.7498/aps.57.784
    [16] BAI HAI-LI, JIANG EN-YONG, WANG CUN-DA, TIAN REN-YU. ENHANCEMENT OF THE REFLECTIVITY OF Co/C SOFT X-RAY MULTILAYERS AT GRAZING INCIDENCE BY THERMAL TREATMENT. Acta Physica Sinica, 1997, 46(4): 732-739. doi: 10.7498/aps.46.732
    [17] FENC BI-BO, WANG MING-CHANG, WANG ZHI-JIANG, LU ZAI-TONG, ZHANG LI-FEN, FENG CHENG-SHI. A NOVEL SMALL-PERIOD WIGGLER FOR FREE-ELECTRON LASERS. Acta Physica Sinica, 1992, 41(3): 442-447. doi: 10.7498/aps.41.442
    [18] HONG XI-CHUN, HUANG WEI-GANG, WANG SHAO-MIN. DIFFRACTION INTEGRAL FORMULA FOR MISALIGNED OPTICAL SYSTEMS. Acta Physica Sinica, 1982, 31(12): 75-83. doi: 10.7498/aps.31.75
    [19] YANG GUO-ZHEN, GU BEN-YUAN. ON THE AMPLITUDE-PHASE RETRIEVAL PROBLEM IN OPTICAL SYSTEMS. Acta Physica Sinica, 1981, 30(3): 410-413. doi: 10.7498/aps.30.410
    [20] WANG CHIH-CHIANG. THE ABERRATIONS OF CYLINDRICAL OPTICAL SYSTEMS. Acta Physica Sinica, 1960, 16(4): 205-213. doi: 10.7498/aps.16.205
Metrics
  • Abstract views:  6319
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2019
  • Accepted Date:  17 October 2019
  • Published Online:  05 February 2020

/

返回文章
返回