Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application

Tao Meng-Meng Tao Bo Ye Jing-Feng Shen Yan-Long Huang Ke Ye Xi-Sheng Zhao Jun

Citation:

Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application

Tao Meng-Meng, Tao Bo, Ye Jing-Feng, Shen Yan-Long, Huang Ke, Ye Xi-Sheng, Zhao Jun
PDF
HTML
Get Citation
  • Tunable diode laser absorption spectroscopy (TDLAS) is a widely used technology for measuring absorption spectrum. However, the measurement efficiency of TDLAS is greatly limited by the narrow tuning range of conventional tunable laser diode. Exploiting a wideband, narrow linewidth tuning laser source, hyperspectral absorption spectroscopy possesses the ability to provide the overall absorption information over a continuous waveband in a single scan, which would significantly improve the data volume and diagnostic capability of TDLAS. With profound and strong absorption lines of water and carbon dioxide, the 2 μm waveband is an ideal candidate for water and carbon dioxide related absorption spectrum. An absorption line recognition threshold of 0.07 nm is derived for the absorption spectrum measurement of water around 2 μm through theoretical analysis. Utilizing the wideband emission spectrum of Tm-doped fiber, a wideband tunable, narrow linewidth fiber laser operating at 2 μm is built by combining a tunable FP filter with a fiber saturable absorber. The tunable FP filter is responsible for the wavelength control of the laser system, with which a 60 nm wideband tuning range from 1840 nm to 1900 nm is achieved. With a section of Tm-Ho codoped fiber as the fiber saturable absorber which is used for linewidth compression, a static linewidth of 0.05 nm is attained. This wideband tunable, narrow linewidth fiber laser is tested for the hyperspectral absorption spectrum measurement of water around 2 μm. Drived with a 0–10 V triangle wave at a repetition rate of 50 Hz, the output spectrum of the laser spans over a wavelength range of about 30 nm from 1856 nm to 1886 nm. The laser beam propagates about 50 cm through an open air, and then enters into the detectors for direct measurement. The 35 absorption lines of water are recognized after processing the data. Within the 1870–1880 nm range, comparisons with the theoretical absorption spectra at different laser linewidths, derived from the HITRAN2012 absorption database, show that the measured data cannot effectively distinguish two absorption lines adjacent to the strong absorption line at 1873 nm and 1877 nm. And, the measured results can be best fitted to a laser linewidth of about 0.08 nm, demonstrating that in the dynamic scanning process, the linewidth of the laser is expanded beyond the absorption line recognition threshold. Thus, when operating in a fast wideband scanning mode, the laser system should further compress its linewidth.
      Corresponding author: Tao Bo, taobo@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91541203, 91641112) and the Fund of the State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM1709)
    [1]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energ. Combust. Sci. 60 132

    [2]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45Google Scholar

    [3]

    丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar

    Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar

    [4]

    Wu Q, Wang F, Li M, Yan J 2017 Combust. Sci. Technol. 189 1571Google Scholar

    [5]

    Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar

    [6]

    Tao B, Hu Z Y, Fan W, Wang S, Ye J F, Zhang Z R 2017 Opt. Express 25 A762Google Scholar

    [7]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar

    [8]

    Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar

    [9]

    Kranendonk L A, Caswell A W, Hagen C L, Neuroth C T, Shouse D T, Gord J R, Sanders S T 2009 J. Propul. Power 25 859Google Scholar

    [10]

    Ma L, Cai W, Caswell A W, Kraetschmer T, Sanders S T, Roy S, Gord J R 2009 Opt. Express 17 8602Google Scholar

    [11]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovt-seva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Ra. 130 4Google Scholar

    [12]

    聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏 2017 物理学报 66 204204Google Scholar

    Nie W, Kan R F, Xu Z Y, Yao L, Xia H H, Peng Y Q, Zhang B Q, He Y B 2017 Acta Phys. Sin. 66 204204Google Scholar

    [13]

    Refaat T F, Singh U N, Yu J, Petros M, Ismail S, Kavaya M J, Davis K J 2015 Appl. Opt. 54 1387Google Scholar

    [14]

    Gibert F, Flamant P H, Bruneau D, Loth C 2006 Appl. Opt. 45 4448Google Scholar

    [15]

    Jackson S D, King T A 1999 J. Lightwave Technol. 17 948Google Scholar

    [16]

    Jackson S D 2006 IEEE Photon. Technol. Lett. 18 1885Google Scholar

    [17]

    Jackson S D 2009 Laser Photon. Rev. 3 466Google Scholar

    [18]

    Stark A, Correia L, Teichmann M, Salewski S, Larsen C, Baev V M, Toschek P E 2003 Opt. Commun. 215 113Google Scholar

    [19]

    Young R J De, Barnes N P 2010 Appl. Opt. 49 562Google Scholar

    [20]

    Bremer K, Pal A, Yao S, Lewis E Sen R, Sun T, Grattan K T V 2013 Appl. Opt. 52 3957Google Scholar

    [21]

    陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生 2016 红外与激光工程 45 1205002Google Scholar

    Tao M M, Tao B, Yu T, Wang Z B, Feng G B, Ye X S 2016 Infrar. Laser Eng. 45 1205002Google Scholar

    [22]

    Tao M M, Feng G B, Yu T, Ye X S, Wang Z B, Shen Y L, Zhao J 2018 Opt. Laser Technol. 100 176Google Scholar

    [23]

    Tao M M, Yu T, Chen H W, Shen Y L, Ye X S, Zhao J 2018 Laser Phys. 28 115108Google Scholar

  • 图 1  水在1840−1900 nm波段的吸收谱线

    Figure 1.  Absorption spectrum of water in the wavelength range of 1840−1900 nm

    图 2  不同激光线宽对1870 nm附近吸收谱线的影响

    Figure 2.  Influences of laser linewidth on the detected absorption lines around 1870 nm.

    图 3  基于光纤可饱和吸收体的激光器线宽压缩光路设计(WDM, 反射式波分复用器; OC, 输出耦合器; ISO, 光纤隔离器; FSA, 光纤可饱和吸收体; FP filter, 法布里-珀罗滤波器)

    Figure 3.  Linewidth compression design of laser based on fiber saturable absorber (WDM, wavelength division multiplexer; OC, output coupler; ISO, isolator; FSA, fiber saturable absorber; FP filter, Fabry Perot filter).

    图 4  低抽运功率下激光器脉冲输出序列

    Figure 4.  Output pulse train of laser at low pump power.

    图 5  低抽运功率下半个扫描周期内的输出脉冲 (a)脉冲序列; (b)单个脉冲

    Figure 5.  Output pulses in a half scanning period at low pump power: (a) Pulse train; (b) a single pulse.

    图 6  连续运转模式下激光器的长时间输出功率监测

    Figure 6.  Long-time output power record of laser at continuous wave operation.

    图 7  连续运转模式下激光器的瞬时输出功率监测

    Figure 7.  Instantaneous output power of laser at continuous wave operation

    图 8  加入光纤可饱和吸收体后激光器典型输出光谱

    Figure 8.  Typical output spectrum of laser with fiber saturable absorber.

    图 9  法布里-珀罗干涉仪扫描得到的激光器线宽特性

    Figure 9.  Laser linewidth measured with a scanning Fabry-Perot interferometer.

    图 10  偏振控制条件下激光器输出纵模特性 (a)双纵模; (b)单纵模

    Figure 10.  Oscillating laser modes measured with polarization control: (a) Dual modes; (b) single mode.

    图 11  实验测得的吸收信号: (a) HgCdTe探测器; (b) InGaAs PDA探测器

    Figure 11.  Measured absorption signal: (a) HgCdTe detector; (b) InGaAs PDA detector.

    图 12  典型的单个激光器扫描周期内测量的直接吸收光谱(内插图为局部的吸收光谱放大图)

    Figure 12.  Typical direct absorption spectrum in a single scanning period. The insert is the enlarged local absorption spectrum.

    图 13  1856—1886 nm范围内水的吸收光谱数据

    Figure 13.  Absorption spectra of water from 1856 nm to 1886 nm

    图 14  1870—1880 nm范围内吸收谱线及残差 (a)吸收谱线; (b)残差

    Figure 14.  Absorption lines and corresponding residuals of water in 1870—1880 nm wavelength range: (a) Absorption lines; (b) residuals.

  • [1]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energ. Combust. Sci. 60 132

    [2]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta B 106 45Google Scholar

    [3]

    丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar

    Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar

    [4]

    Wu Q, Wang F, Li M, Yan J 2017 Combust. Sci. Technol. 189 1571Google Scholar

    [5]

    Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar

    [6]

    Tao B, Hu Z Y, Fan W, Wang S, Ye J F, Zhang Z R 2017 Opt. Express 25 A762Google Scholar

    [7]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar

    [8]

    Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun. 346 53Google Scholar

    [9]

    Kranendonk L A, Caswell A W, Hagen C L, Neuroth C T, Shouse D T, Gord J R, Sanders S T 2009 J. Propul. Power 25 859Google Scholar

    [10]

    Ma L, Cai W, Caswell A W, Kraetschmer T, Sanders S T, Roy S, Gord J R 2009 Opt. Express 17 8602Google Scholar

    [11]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovt-seva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Ra. 130 4Google Scholar

    [12]

    聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏 2017 物理学报 66 204204Google Scholar

    Nie W, Kan R F, Xu Z Y, Yao L, Xia H H, Peng Y Q, Zhang B Q, He Y B 2017 Acta Phys. Sin. 66 204204Google Scholar

    [13]

    Refaat T F, Singh U N, Yu J, Petros M, Ismail S, Kavaya M J, Davis K J 2015 Appl. Opt. 54 1387Google Scholar

    [14]

    Gibert F, Flamant P H, Bruneau D, Loth C 2006 Appl. Opt. 45 4448Google Scholar

    [15]

    Jackson S D, King T A 1999 J. Lightwave Technol. 17 948Google Scholar

    [16]

    Jackson S D 2006 IEEE Photon. Technol. Lett. 18 1885Google Scholar

    [17]

    Jackson S D 2009 Laser Photon. Rev. 3 466Google Scholar

    [18]

    Stark A, Correia L, Teichmann M, Salewski S, Larsen C, Baev V M, Toschek P E 2003 Opt. Commun. 215 113Google Scholar

    [19]

    Young R J De, Barnes N P 2010 Appl. Opt. 49 562Google Scholar

    [20]

    Bremer K, Pal A, Yao S, Lewis E Sen R, Sun T, Grattan K T V 2013 Appl. Opt. 52 3957Google Scholar

    [21]

    陶蒙蒙, 陶波, 余婷, 王振宝, 冯国斌, 叶锡生 2016 红外与激光工程 45 1205002Google Scholar

    Tao M M, Tao B, Yu T, Wang Z B, Feng G B, Ye X S 2016 Infrar. Laser Eng. 45 1205002Google Scholar

    [22]

    Tao M M, Feng G B, Yu T, Ye X S, Wang Z B, Shen Y L, Zhao J 2018 Opt. Laser Technol. 100 176Google Scholar

    [23]

    Tao M M, Yu T, Chen H W, Shen Y L, Ye X S, Zhao J 2018 Laser Phys. 28 115108Google Scholar

Metrics
  • Abstract views:  9730
  • PDF Downloads:  163
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2019
  • Accepted Date:  01 November 2019
  • Published Online:  05 February 2020

/

返回文章
返回