Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatial resolution of novel liquid scintillating capillary array

Zhang Mei Li Kui-Nian Li Yang Sheng Liang Zhang Yan-Hong

Citation:

Spatial resolution of novel liquid scintillating capillary array

Zhang Mei, Li Kui-Nian, Li Yang, Sheng Liang, Zhang Yan-Hong
PDF
HTML
Get Citation
  • Scintillating array image plates are allowed high resolution through a thicker detector which increases quantum efficiency without degrading the imaging resolution substantially. Due to limitations imposed by process capability, scintillator fiber array with pixel diameter less than 0.2 mm is hardly manufactured to improve performance. Therefore, a liquid scintillator capillary array with 0.1 mm pixel is developed to improve the detection efficiency and spatial resolution of image plate for low intensity radiation imaging. Its performances are studied and tested by simulation and experiment, and are compared with those of scintillating fiber array. Especially in order to gain high fidelity representation of modulation transfer function of the array image plate, a method of simulating and measuring the slanted knife edge response and an iterative algorithm are introduced. For 14 MeV neutron and 1.25 MeV gamma, the slanted knife edge responses of these array image plates with pixel dimensions in a range from 0.1 mm to 0.5 mm are respectively simulated by MCNPx program and the modulation transfer function (MTF) are obtained. The simulation results show that compared with scintillating fiber array, the liquid scintillator capillaries array has an obvious merit in spatial resolution because of greater stopping power for secondary charged particle in the capillary quartz glass wall with 0.02 mm in thickness. Its ultimate resolution can reach to 1.8 lp/mm for 14 MeV neutron by simulation. At the 4000 Ci 60Co facility, a 5-cm-thick tungsten bar, one side of which has a curvature of 0.1 radian to minimize the misalignment effect, is made a knife edge. The MTF of the scintillating fiber array with 0.3 mm and 0.5 mm pixel and newly developed liquid scintillator capillary array is measured through this tungsten knife edge. Experimental measurement results have also verified that the liquid scintillator capillary array performs well in spatial resolution and luminescent uniformity for 1.25 MeV gamma. The ultimate spatial resolution, 0.9 lp/mm is gained, and those of other scintillating fiber arrays are all less than 0.5 lp/mm. Moreover, experimental test validates the simulating method and simulated results, although the measured value is slight less than the simulated value because of the effect of dimension of 60Co source.
      Corresponding author: Zhang Mei, zandwnever@163.com
    [1]

    Ress D, Lerche R A, Ellis R J, Heaton G W, Lehr E 1995 Rev. Sci. Instrum. 66 4943

    [2]

    Disdier L, Lerche R A, Bourgade J L, Glebov V Y 2004 Rev. Sci. Instrum. 75 2134Google Scholar

    [3]

    Caillaud T, Landoas O, Briat M, Rossé B, Thfoin I, Philippe F, Casner A, Bourgade J L, Disdier L, Glebov V Y, Marshall F J 2012 Rev. Sci. Instrum. 83 10E131Google Scholar

    [4]

    Disdier L, Rouyer A, Wilson D C, Fedotoff A, Stoeckl C, BourgadeJ L, Glebov V Y, Garconnet J P, Seka W 2002 Nucl. Instrum. Meth. A 489 496Google Scholar

    [5]

    Klir D, Shishlov A V, Kokshenev V A, Kubes P, Labetsky A Y, Rezac K, Cikhardt J, Fursov F I, Kovalchuk B M, Kravarik J, Kurmaev N E, Ratakhin N A, Sila O, Stodulka J 2013 Plasma Phys. Controlled Fusion 55 85012Google Scholar

    [6]

    章法强, 李正宏, 杨建伦, 叶凡, 王真, 夏广新, 应纯同, 刘广均 2007 中国科学: 技术科学 37 569Google Scholar

    Zhang F Q, Li Z H, Yang J L, Ye F, Wang Z, Xia G, Ying C T, Liu G J 2007 Sci. Chin. Tech. Sci. 37 569Google Scholar

    [7]

    Melek Z 2015 Ph. D. Dissertation (Australia Wollongong: University of Wollongong)

    [8]

    章法强, 杨建伦, 李正宏, 叶凡, 徐荣昆 2009 物理学报 58 1316Google Scholar

    Zhang F Q, Yang J L, Li Z H, Ye F, Xu R K 2009 Acta Phys. Sin. 58 1316Google Scholar

    [9]

    马继明, 王奎禄, 宋顾周, 张建奇, 王群书 2011 核电子学与探测技术 31 473Google Scholar

    Ma J M, Wang K L, Song G Z, Zhang J Q, Wang Q S 2011 Nuclear Electronics & Detection Technology 31 473Google Scholar

    [10]

    姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩 2017 物理学报 66 062401Google Scholar

    Yao Z M, Duan B J, Song G Z, Yan W P, Ma J M, Han C C, Song Y 2017 Acta Phys. Sin. 66 062401Google Scholar

    [11]

    Daniel A L, Camille B, Gary P G, Bradford H B, Brian W M, David F, Lars R F 2011 SPIE Int. Soc. Opt. Eng. 8144 814407Google Scholar

    [12]

    Thfoin I, Landoas O, Caillaud T, Disdier L, Bourgade J L, Rosse B, Sangster T C, Glebov V Y 2009 ANIMMA First International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications New York, United States, June 7−10, 2009 p1

    [13]

    Daniel A L, Bradford H B, Gary P G 2014 Proceedings Volume 9211, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion Ⅲ 921105 San Diego, California, United States, September 23, 2014 p1

    [14]

    Simpson R, Cutler T E, Danly C R, Espy M A, Goglio J H, Hunter J F, Madden A C, Mayo D R, Merrill F E, Nelson R O, Swift A L, Wilde C H R 2016 Rev. Sci. Instrum 87 11D830-1

    [15]

    Merrill F E, Bower D, Buckles R, Clark D D, Danly C R, Drury O B, Dzenitis J M, Fatherley V E 2012 Rev. Sci. Instrum 83 10D317-1

    [16]

    Grim G P, Day R D, Clark D D, Fatherley V E, Finch J P, Garcia F P, Jaramillo S A, Montoya A J, Morgan G L Oertel J A, Ortiz T A, Payton J R, Pazuchanics P D, Schmidt D W, Valdez A C, Wilde C H, Wilke M D 2007 Proceedings Volume 6707, Penetrating Radiation Systems and Applications VⅢ 67070 H San Diego, California, United States, September 28, 2007 p1

    [17]

    张凤娜 2016 博士学位论文 (西安: 西安交通大学)

    Zhang F N 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiao Tong University) (in Chinese)

    [18]

    Danly C R, Sjue S, Wilde C H, Merrill F E, Haight R C 2014 Rev. Sci. Instrum. 85 11E607Google Scholar

    [19]

    Jia Q G, Hu H S, Zhang F N, Zhang T K, Wei L, Zhan Y P, Liu Z H 2013 IEEE Trans. Nucl. Sci. 60 4727Google Scholar

    [20]

    Christopher D C, Richard C S 2008 J. Opt. Soc. Am. A 25 159Google Scholar

    [21]

    王培伟 2003 硕士学位论文 (西安: 西北核技术研究所)

    Wang P W 2013 M. S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)

    [22]

    Cao X H, Huang H K, Lou L 2000 Proceedings 3977, Medical Imaging 2000: Physics of Medical Imaging San Diego, CA, United States, April 25, 2000 p580

    [23]

    Bai H Y, Wang Z M, Zhang LY, Lu Y, Jiang H Y, Chen J X, Zhang G H 2017 Nucl. Instrum. Meth. A 863 47Google Scholar

    [24]

    Pino F, Stevanato L, Cester D, Nebbia G, Bohus L S, Viesti G 2014 Appl. Radiat. Isot. 89 79Google Scholar

  • 图 1  阵列成像屏实物图 (a) LCA液闪阵列屏; (b) GSFA纤维屏; (c) BSFA纤维屏

    Figure 1.  Array imaging plate: (a) LCA liquid scintillator capillaries array; (b) GSFA scintillating array screen; (c) BSFA scintillating array screen.

    图 2  矩形面源在阵列上的投影示意图 (a)面源投影内的阵列单元完全被辐照; (b), (c)投影边界处的阵列单元没有被完全辐照; (d)投影倾斜于阵列排布方向

    Figure 2.  Projection sketch of surface source on the array: (a) The array cell at the boundary of projection area is fully irradiated; (b), (c) the array cell at the boundary of projection area is not fully irradiated; (d) edge of projection slants through the horizontal direction of the array.

    图 3  倾斜边缘扩展函数投影示意图

    Figure 3.  Projection sketch of slope edge for ESF.

    图 4  EJ309液闪对质子和电子的光响应曲线(1 MeVee表示沉积1 MeV电子能量的输出光量;) (a)质子光响应函数; (b)电子光响应函数

    Figure 4.  Light output of EJ309 as a function of energy for particle energy: (a) Light output as a function proton energy; (b) light output as a function electron energy.

    图 5  模拟的液闪阵列屏ESF下降沿归一化曲线

    Figure 5.  Normalized curves of falling edge of ESF for liquid scintillator array by simulation.

    图 6  新型液闪阵列屏与闪烁纤维屏的MTF理论模拟曲线 (a) 14 MeV中子激发下的MTF曲线; (b) 1.25 MeV伽马激发下的MTF曲线

    Figure 6.  MTF curves of the liquid scintillator capillary array and scintillating fiber array by simulation: (a) MTF curves of the three array image plates with 14 MeV neutron irradiation; (b) MTF curves of the three array image plates with 1.25 MeV Gamma irradiation.

    图 7  成像屏调制传递函数测量布局示意图

    Figure 7.  Experimental setup sketch for MTF measurement.

    图 8  三种成像屏均匀性的实测结果 (a) LCA液闪阵列; (b) GSFA纤维阵列屏; (c) BSFA纤维阵列屏

    Figure 8.  Luminescent uniformity of the three array image plates by measurement: (a) LCA liquid scintillator capillaries array; (b) GSFA scintillating fiber array; (c) BSFA scintillating fiber array.

    图 9  阵列屏对1.25 MeV伽马射线的MTF实测与模拟结果 (a) LCA液闪阵列屏; (b) GSFA闪烁纤维阵列屏; (c) BSFA闪烁纤维阵列屏

    Figure 9.  Comparison of MTF curves measured and simulated for the three array image plates under 1.25 MeV Gamma ray: (a) LCA liquid scintillator capillaries array; (b) GSFA scintillating fiber array; (c) BSFA scintillating fiber array.

    表 1  三种阵列屏的基本结构尺寸和参数

    Table 1.  Geometry dimension and performance parameter of three array imaging plate.

    阵列图像屏
    GSFABSFALCA
    像元尺寸/mm0.30.50.1
    中心波长/nm492432426
    衰减时间/ns2.72.7 < 3.5
    厚度/mm505060
    闪烁材料BCF20BCF10EJ309
    DownLoad: CSV
  • [1]

    Ress D, Lerche R A, Ellis R J, Heaton G W, Lehr E 1995 Rev. Sci. Instrum. 66 4943

    [2]

    Disdier L, Lerche R A, Bourgade J L, Glebov V Y 2004 Rev. Sci. Instrum. 75 2134Google Scholar

    [3]

    Caillaud T, Landoas O, Briat M, Rossé B, Thfoin I, Philippe F, Casner A, Bourgade J L, Disdier L, Glebov V Y, Marshall F J 2012 Rev. Sci. Instrum. 83 10E131Google Scholar

    [4]

    Disdier L, Rouyer A, Wilson D C, Fedotoff A, Stoeckl C, BourgadeJ L, Glebov V Y, Garconnet J P, Seka W 2002 Nucl. Instrum. Meth. A 489 496Google Scholar

    [5]

    Klir D, Shishlov A V, Kokshenev V A, Kubes P, Labetsky A Y, Rezac K, Cikhardt J, Fursov F I, Kovalchuk B M, Kravarik J, Kurmaev N E, Ratakhin N A, Sila O, Stodulka J 2013 Plasma Phys. Controlled Fusion 55 85012Google Scholar

    [6]

    章法强, 李正宏, 杨建伦, 叶凡, 王真, 夏广新, 应纯同, 刘广均 2007 中国科学: 技术科学 37 569Google Scholar

    Zhang F Q, Li Z H, Yang J L, Ye F, Wang Z, Xia G, Ying C T, Liu G J 2007 Sci. Chin. Tech. Sci. 37 569Google Scholar

    [7]

    Melek Z 2015 Ph. D. Dissertation (Australia Wollongong: University of Wollongong)

    [8]

    章法强, 杨建伦, 李正宏, 叶凡, 徐荣昆 2009 物理学报 58 1316Google Scholar

    Zhang F Q, Yang J L, Li Z H, Ye F, Xu R K 2009 Acta Phys. Sin. 58 1316Google Scholar

    [9]

    马继明, 王奎禄, 宋顾周, 张建奇, 王群书 2011 核电子学与探测技术 31 473Google Scholar

    Ma J M, Wang K L, Song G Z, Zhang J Q, Wang Q S 2011 Nuclear Electronics & Detection Technology 31 473Google Scholar

    [10]

    姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩 2017 物理学报 66 062401Google Scholar

    Yao Z M, Duan B J, Song G Z, Yan W P, Ma J M, Han C C, Song Y 2017 Acta Phys. Sin. 66 062401Google Scholar

    [11]

    Daniel A L, Camille B, Gary P G, Bradford H B, Brian W M, David F, Lars R F 2011 SPIE Int. Soc. Opt. Eng. 8144 814407Google Scholar

    [12]

    Thfoin I, Landoas O, Caillaud T, Disdier L, Bourgade J L, Rosse B, Sangster T C, Glebov V Y 2009 ANIMMA First International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications New York, United States, June 7−10, 2009 p1

    [13]

    Daniel A L, Bradford H B, Gary P G 2014 Proceedings Volume 9211, Target Diagnostics Physics and Engineering for Inertial Confinement Fusion Ⅲ 921105 San Diego, California, United States, September 23, 2014 p1

    [14]

    Simpson R, Cutler T E, Danly C R, Espy M A, Goglio J H, Hunter J F, Madden A C, Mayo D R, Merrill F E, Nelson R O, Swift A L, Wilde C H R 2016 Rev. Sci. Instrum 87 11D830-1

    [15]

    Merrill F E, Bower D, Buckles R, Clark D D, Danly C R, Drury O B, Dzenitis J M, Fatherley V E 2012 Rev. Sci. Instrum 83 10D317-1

    [16]

    Grim G P, Day R D, Clark D D, Fatherley V E, Finch J P, Garcia F P, Jaramillo S A, Montoya A J, Morgan G L Oertel J A, Ortiz T A, Payton J R, Pazuchanics P D, Schmidt D W, Valdez A C, Wilde C H, Wilke M D 2007 Proceedings Volume 6707, Penetrating Radiation Systems and Applications VⅢ 67070 H San Diego, California, United States, September 28, 2007 p1

    [17]

    张凤娜 2016 博士学位论文 (西安: 西安交通大学)

    Zhang F N 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiao Tong University) (in Chinese)

    [18]

    Danly C R, Sjue S, Wilde C H, Merrill F E, Haight R C 2014 Rev. Sci. Instrum. 85 11E607Google Scholar

    [19]

    Jia Q G, Hu H S, Zhang F N, Zhang T K, Wei L, Zhan Y P, Liu Z H 2013 IEEE Trans. Nucl. Sci. 60 4727Google Scholar

    [20]

    Christopher D C, Richard C S 2008 J. Opt. Soc. Am. A 25 159Google Scholar

    [21]

    王培伟 2003 硕士学位论文 (西安: 西北核技术研究所)

    Wang P W 2013 M. S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)

    [22]

    Cao X H, Huang H K, Lou L 2000 Proceedings 3977, Medical Imaging 2000: Physics of Medical Imaging San Diego, CA, United States, April 25, 2000 p580

    [23]

    Bai H Y, Wang Z M, Zhang LY, Lu Y, Jiang H Y, Chen J X, Zhang G H 2017 Nucl. Instrum. Meth. A 863 47Google Scholar

    [24]

    Pino F, Stevanato L, Cester D, Nebbia G, Bohus L S, Viesti G 2014 Appl. Radiat. Isot. 89 79Google Scholar

Metrics
  • Abstract views:  5878
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2019
  • Accepted Date:  29 November 2019
  • Published Online:  20 March 2020

/

返回文章
返回