Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of microcavity effect on the performance of top emission tandem blue organic light emitting devices

Zhang Juan Jiao Zhi-Qiang Yan Hua-Jie Chen Fu-Dong Huang Qing-Yu Kang Liang-Liang Liu Xiao-Yun Wang Lu Yuan Guang-Cai

Citation:

Influence of microcavity effect on the performance of top emission tandem blue organic light emitting devices

Zhang Juan, Jiao Zhi-Qiang, Yan Hua-Jie, Chen Fu-Dong, Huang Qing-Yu, Kang Liang-Liang, Liu Xiao-Yun, Wang Lu, Yuan Guang-Cai
PDF
HTML
Get Citation
  • Comparing with traditional single organic light-emitting device (OLED), the luminance efficiency and lifetime of tandem OLED are significantly improved. Therefore, it is of crucial importance to in depth study the influence of microcavity effect on the performance of top emitting tandem OLED. In this paper, taking the blue organic light emitting device for example, the change rule of optical and electrical properties of top-emitting tandem blue-light device are studied by combining optical simulation with practical experiments. The specific experiment is as follows. The top emitting tandem blue organic light devices are fabricated, in which the two light-emitting layers are located at the first anti node and second anti node, the second anti node and third anti node, and the third anti node and fourth anti node in the optical structure of the device respectively. It is found that the performance of the device is better when the two emitting layers of the top-emitting tandem blue light device are located at the second anti node and third anti node in the optical structure of the device respectively. That is to say, when the current density of the device is 15 mA/cm2, the current efficiency of the device reaches 10.68 cd/A, color coordinate (CIEx, y) of the device is (0.14, 0.05), and the time of the brightness decreases from 100% to 95% in 1091.55 hours, which is likely to be due to the fact that when the cavity length of the device is long, it can not only improve the recombination rate of hole and electron in the first light-emitting unit, weaken the surface plasmon polarition effect, reduce the influence of the fluctuation of the film thickness on the cavity length of the device, but also play a role of wrapping partials to a certain extent, improve the efficiency and prolong the device lifetime. The research results provide an important theoretical and data basis for designing the top-emitting tandem blue light device with high efficiency and long lifetime. In the future, we will continue to systematically and detailedly study the top emitting tandem organic light-emitting devices, which will provide strong support for preparing the laminated devices with high efficiency long-lifetime, and lower cost.
      Corresponding author: Yuan Guang-Cai, yuanguangcai@boe.com.cn
    [1]

    刘洋 2017 硕士学位论文 (天津: 天津理工大学)

    Liu Y 2017 M. S. Thesis (Tianjin: Tianjin University of Technology) (in Chinese)

    [2]

    Sun H D, Chen Y H, Chen J SH, Ma D G 2016 IEEE J. Sel. Top. Quant. Electron. 22 1Google Scholar

    [3]

    景姝, 王华, 刘慧慧, 杜晓刚, 苗艳勤, 潘成龙, 周禾丰 2014 液晶与显示 29 6Google Scholar

    Jing S, Wang H, Liu H H, Du X G, Miao Y Q, Pan C L, Zhou H F 2014 Chin. J. Liq. Cryst. Displays 29 6Google Scholar

    [4]

    Lee H W, Lee J W, Lee S E, Lee J H, Kim Y K 2017 J. Lumin. 188 112Google Scholar

    [5]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77Google Scholar

    [6]

    Hoang V, Lee S E, Lee J G, Kim Y K, Lee J H 2017 Opt. Express 25 31006Google Scholar

    [7]

    Lee S E, Lee H W, Lee J W, Hwang K M, Park S N, Yoon S S, Kim Y K 2015 Jpn. J. Appl. Phys. 54 06FGoogle Scholar

    [8]

    Sun J X, Zhu X L, Peng H J, Wong M, Kwok H S 2005 Appl. Phys. Lett. 87 093504Google Scholar

    [9]

    Chen C W, Lu Y J, Wu C C, Wu E H E, Chu C W, Yang Y 2005 Appl. Phys. Lett. 87 241121Google Scholar

    [10]

    Kuehne A J C, Gather M C 2016 Chem. Rev. 116 12823Google Scholar

    [11]

    Zhang X, Dong H, Hu W 2018 Adv. Mater. 30 1801048Google Scholar

    [12]

    Muccini M 2006 Nat. Mater. 5 605Google Scholar

    [13]

    Uoyama C, Gou S K, Shi Z K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [14]

    Chen Y, Tian H, Chen Y, Geng Y, Yan D, Wang L, Ma D 2012 J. Mater. Chem. 22 8492Google Scholar

    [15]

    Ban X, Sun K, Sun Y, Huang B, Ye S, Yang M, Jiang W 2015 ACS Appl. Mater. Interfaces 7 25129Google Scholar

    [16]

    Hsu S F, Lee C C, Hu A T, Chen C H 2004 Curr. Appl. Phys. 4 663Google Scholar

    [17]

    Liao L S, Klubek K P, Tang C W 2004 Appl. Phys. Lett. 84 167Google Scholar

    [18]

    Tsutsui T, Terai M 2004 Appl. Phys. Lett. 84 440Google Scholar

    [19]

    Yang J P, Bao Q Y, Xiao Y, Deng Y H, Li Y Q, Lee S T, Tang J X 2012 Org. Electron. 13 2243Google Scholar

    [20]

    Ho M H, Chen T M, Yeh P C, Hwang S W, Chen C H 2007 Appl. Phys. Lett. 91 233507Google Scholar

    [21]

    张娟 2017 硕士学位论文 (天津: 天津理工大学)

    Zhang J 2017 M. S. Thesis (Tianjin: Tianjin University of Technology) (in Chinese)

    [22]

    Zhang J, Xin L W, Gao J, Liu Y, Rui H S, Lin X, Hua Y L, Wu X M, Yin S G 2017 J. Mater. Sci. Mater. Electron. 28 12761Google Scholar

    [23]

    李亭亭 2018 硕士学位论文 (西安: 陕西科技大学)

    Li T T 2018 M.S. Thesis (Shaanxi: Shaanxi University of Science & Technology) (in Chinese)

    [24]

    Udagawa K, Sasabe H, Cai C, Kido J 2014 Adv. Mater. 26 5062Google Scholar

  • 图 1  微腔器件原理图

    Figure 1.  Schematic diagram of microcavity device.

    图 2  有机材料的分子结构式

    Figure 2.  Molecular structure formula of organic materials.

    图 3  有机材料的折射率曲线

    Figure 3.  Refractive index curve of organic materials.

    图 4  器件A1发光性能模拟图 (a)不同的腔长对OLED器件CIEx, y的影响; (b)不同的腔长对OLED器件发光光谱的影响; (c)不同的腔长对OLED器件亮度的影响

    Figure 4.  Simulated electroluminescence (EL) performance of devices A1: (a) Influence of length of microcavity on CIEx, y of OLED; (b) influence of length of microcavity on spectrum of OLED; (c) influence of length of microcavity on luminance of OLED.

    图 5  器件A2发光性能模拟图 (a)不同的腔长对OLED器件CIEx, y的影响; (b)不同的腔长对OLED器件发光光谱的影响; (c)不同的腔长对OLED器件亮度的影响

    Figure 5.  Simulated EL performance of devices A2: (a) Influence of length of microcavity on CIEx, y of OLED; (b) influence of length of microcavity on spectrum of OLED; (c) influence of length of microcavity on luminance of OLED.

    图 6  器件1, 2, 3的电流密度-电压特性曲线

    Figure 6.  Current density-voltage characteristics of device 1, 2 and 3.

    图 7  电荷产生层的能级示意图

    Figure 7.  Energy level diagram of charge generation layer.

    图 8  器件A的发光性能图 (a)光谱特性曲线; (b)电流效率-亮度特性曲线; (c)电流密度-电压特性曲线

    Figure 8.  The EL performance of devices A: (a) The spectrum characteristics; (b) the current efficiency-luminance characteristics; (c) the current density-voltage characteristics.

    图 9  OLED器件结构图

    Figure 9.  Device structure of OLED.

    图 10  器件B, C, D, E的发光性能图 (a)光谱特性曲线; (b)电流效率-亮度特性曲线; (c)电流密度-功率效率特性曲线; (d)电流密度-外量子效率特性曲线; (e)电流密度-电压特性曲线; (f)寿命特性曲线@50 mA/cm2; (g)寿命特性曲线@15 mA/cm2; (h)亮度-视角特性曲线; (i)光谱-视角特性曲线

    Figure 10.  The EL performance of devices B, C, D and E: (a) The spectrum characteristics; (b) the current efficiency-luminance characteristics; (c) the current density-power efficiency characteristics; (d) the current density- external quantum efficiency characteristics; (e) the current density-voltage characteristics; (f) the lifetime characteristics @50 mA/cm2; (g) the lifetime characteristics @15 mA/cm2; (h) the luminance-angle characteristics; (i) the spectrum-angle characteristics.

    图 11  有机材料的分子结构式

    Figure 11.  Molecular structure formula of organic materials.

    图 12  器件G发光性能模拟图 (a)不同的腔长对OLED器件CIEx, y的影响; (b)不同的腔长对OLED器件发光光谱的影响; (c)不同的腔长对OLED器件亮度的影响

    Figure 12.  Simulated EL performance of devices G: (a) Influence of the length of microcavity on CIEx, y of OLED; (b) influence of the length of microcavity on spectrum of OLED; (c) influence of the length of microcavity on luminance of OLED.

    图 13  器件F, H, I, J的发光性能图 (a)光谱特性曲线; (b)电流效率-亮度特性曲线; (c)电流密度-功率效率特性曲线; (d)电流密度-外量子效率特性曲线; (e)电流密度-电压特性曲线; (f)寿命特性曲线@50 mA/cm2

    Figure 13.  The EL performance of devices F, H, I and J: (a) The spectrum characteristics; (b) the current efficiency-luminance characteristics; (c) the current density-power efficiency characteristics; (d) the current density-external quantum efficiency characteristics; (e) the current density-voltage characteristics; (f) the lifetime characteristics @50 mA/cm2.

    表 1  有机材料的折射率

    Table 1.  Refractive index of organic materials.

    波长/nm折射率
    HAT-CNNPBTCTAADNDAS-phTPBiLiq
    4652.022.051.962.091.961.701.85
    5451.921.941.881.891.881.661.79
    6201.881.891.851.831.851.641.76
    DownLoad: CSV

    表 2  器件A的测试性能参数

    Table 2.  Performance parameters of device A.

    Device@15 mA/cm2V/VL/cd·m–2CE/cd·A–1PE/lm·W–1EQE/%CIExCIEy
    5 nm6.76154810.324.785.250.13720.0516
    25 nm7.1114259.514.264.880.34630.4545
    45 nm7.4213809.223.904.690.34250.6028
    65 nm8.306154.131.612.200.36210.6218
    85 nm8.868255.531.962.820.13750.0405
    105 nm9.5114709.823.144.550.13180.4528
    125 nm10.21160310.683.285.250.13690.0512
    145 nm10.80153010.202.965.020.33260.4168
    165 nm11.1110216.801.924.910.34630.4545
    185 nm11.326344.231.162.320.34250.6028
    205 nm11.667995.321.432.510.13750.0405
    225 nm11.98153410.222.695.120.13100.4512
    245 nm12.34158010.532.665.360.13690.0502
    265 nm12.62150410.032.495.080.35120.4555
    DownLoad: CSV

    表 3  器件B, C, D, E的性能参数

    Table 3.  Performance parameters of devices B, C, D and E.

    Device@15 mA/cm2V/VL/cd·m–2CE/cd·A–1PE/lm·W–1EQE/%CIExCIEyLT95(h) @50 mA/cm2
    B3.719786.525.514.080.13760.051458.26
    C6.87154810.324.716.620.13720.051693.88
    D7.33160310.684.586.860.13690.0512140.65
    E8.12157910.534.066.770.13690.050879.88
    DownLoad: CSV

    表 4  器件F, H, I, J的性能参数

    Table 4.  Performance parameters of devices F, H, I and J.

    Device@15 mA/cm2V/VL/cd·m–2CE/cd·A–1PE/lm·W–1EQE/%CIExCIEyLT95(h) @50 mA/cm2
    F3.908805.874.723.050.13850.050446.12
    H7.2112388.263.594.290.13830.050880.88
    I7.72168311.224.575.860.13790.051193.21
    J8.31154710.323.915.350.13780.051572.36
    DownLoad: CSV
  • [1]

    刘洋 2017 硕士学位论文 (天津: 天津理工大学)

    Liu Y 2017 M. S. Thesis (Tianjin: Tianjin University of Technology) (in Chinese)

    [2]

    Sun H D, Chen Y H, Chen J SH, Ma D G 2016 IEEE J. Sel. Top. Quant. Electron. 22 1Google Scholar

    [3]

    景姝, 王华, 刘慧慧, 杜晓刚, 苗艳勤, 潘成龙, 周禾丰 2014 液晶与显示 29 6Google Scholar

    Jing S, Wang H, Liu H H, Du X G, Miao Y Q, Pan C L, Zhou H F 2014 Chin. J. Liq. Cryst. Displays 29 6Google Scholar

    [4]

    Lee H W, Lee J W, Lee S E, Lee J H, Kim Y K 2017 J. Lumin. 188 112Google Scholar

    [5]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77Google Scholar

    [6]

    Hoang V, Lee S E, Lee J G, Kim Y K, Lee J H 2017 Opt. Express 25 31006Google Scholar

    [7]

    Lee S E, Lee H W, Lee J W, Hwang K M, Park S N, Yoon S S, Kim Y K 2015 Jpn. J. Appl. Phys. 54 06FGoogle Scholar

    [8]

    Sun J X, Zhu X L, Peng H J, Wong M, Kwok H S 2005 Appl. Phys. Lett. 87 093504Google Scholar

    [9]

    Chen C W, Lu Y J, Wu C C, Wu E H E, Chu C W, Yang Y 2005 Appl. Phys. Lett. 87 241121Google Scholar

    [10]

    Kuehne A J C, Gather M C 2016 Chem. Rev. 116 12823Google Scholar

    [11]

    Zhang X, Dong H, Hu W 2018 Adv. Mater. 30 1801048Google Scholar

    [12]

    Muccini M 2006 Nat. Mater. 5 605Google Scholar

    [13]

    Uoyama C, Gou S K, Shi Z K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [14]

    Chen Y, Tian H, Chen Y, Geng Y, Yan D, Wang L, Ma D 2012 J. Mater. Chem. 22 8492Google Scholar

    [15]

    Ban X, Sun K, Sun Y, Huang B, Ye S, Yang M, Jiang W 2015 ACS Appl. Mater. Interfaces 7 25129Google Scholar

    [16]

    Hsu S F, Lee C C, Hu A T, Chen C H 2004 Curr. Appl. Phys. 4 663Google Scholar

    [17]

    Liao L S, Klubek K P, Tang C W 2004 Appl. Phys. Lett. 84 167Google Scholar

    [18]

    Tsutsui T, Terai M 2004 Appl. Phys. Lett. 84 440Google Scholar

    [19]

    Yang J P, Bao Q Y, Xiao Y, Deng Y H, Li Y Q, Lee S T, Tang J X 2012 Org. Electron. 13 2243Google Scholar

    [20]

    Ho M H, Chen T M, Yeh P C, Hwang S W, Chen C H 2007 Appl. Phys. Lett. 91 233507Google Scholar

    [21]

    张娟 2017 硕士学位论文 (天津: 天津理工大学)

    Zhang J 2017 M. S. Thesis (Tianjin: Tianjin University of Technology) (in Chinese)

    [22]

    Zhang J, Xin L W, Gao J, Liu Y, Rui H S, Lin X, Hua Y L, Wu X M, Yin S G 2017 J. Mater. Sci. Mater. Electron. 28 12761Google Scholar

    [23]

    李亭亭 2018 硕士学位论文 (西安: 陕西科技大学)

    Li T T 2018 M.S. Thesis (Shaanxi: Shaanxi University of Science & Technology) (in Chinese)

    [24]

    Udagawa K, Sasabe H, Cai C, Kido J 2014 Adv. Mater. 26 5062Google Scholar

  • [1] Huang Yi-Fan, Xing Yang-Guang, Shen Wen-Jie, Peng Ji-Long, Dai Shu-Wu, Wang Ying, Duan Zi-Wen, Yan Lei, Liu Yue, Li Lin. Optical design of sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer. Acta Physica Sinica, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] Wu Chang-Mao, Tang Xiong-Xin, Xia Yuan-Yuan, Yang Han-Xiang, Xu Fan-Jiang. High precision ray tracing method for space camera in optical design. Acta Physica Sinica, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [3] Hou Chen-Yang, Meng Fan-Chao, Zhao Yi-Ming, Ding Jin-Min, Zhao Xiao-Ting, Liu Hong-Wei, Wang Xin, Lou Shu-Qin, Sheng Xin-Zhi, Liang Sheng. “Machine micro/nano optics scientist”: Application and development of artificial intelligence in micro/nano optical design. Acta Physica Sinica, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [4] Xu Xiang-Xin, Chang Jun, Wu Chu-Han, Song Da-Lin. Local hybrid optical encryption system based on double random phase encoding. Acta Physica Sinica, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [5] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [6] Bai Xu-Fang, Chen Lei. Magnetopolaron-state lifetime and qubit decoherence in donor-center quantum dots with the electromagnetic field. Acta Physica Sinica, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [7] Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [8] Feng Shuai, Chang Jun, Niu Ya-Jun, Mu Yu, Liu Xin. A method of designing asymmetric double-sided off-axis aspheric mirror detection compensation zoom light path. Acta Physica Sinica, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [9] Xu Ping, Yang Wei, Zhang Xu-Lin, Luo Tong-Zheng, Huang Yan-Yan. Two-dimensional distribution design of micro-prism for partial integrated light guide plate. Acta Physica Sinica, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [10] Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng. Initial configuration design of off-axis reflective optical system based on vector aberration theory. Acta Physica Sinica, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [11] Tao Hong, Gao Dong-Yu, Liu Bai-Quan, Wang Lei, Zou Jian-Hua, Xu Miao, Peng Jun-Biao. Enhancement of tandem organic light-emitting diode performance by inserting an ultra-thin Ag layer in charge generation layer. Acta Physica Sinica, 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [12] Shen Ben-Lan, Chang Jun, Wang Xi, Niu Ya-Jun, Feng Shu-Long. Design of the active zoom system with three-mirror. Acta Physica Sinica, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [13] Ma Li, Shen Guang-Di, Chen Yi-Xin, Jiang Wen-Jing, Guo Wei-Ling, Xu Chen, Gao Zhi-Yuan. Investigation of the saturation characteristic and lifetime of the novel AlGaInP lightemitting diodes. Acta Physica Sinica, 2014, 63(3): 037201. doi: 10.7498/aps.63.037201
    [14] Ren Hong-Liang. Design and error analysis for optical tweezers based on finite conjugate microscope. Acta Physica Sinica, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [15] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [16] Zhu Hai-Na, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Kong Chao, Yan Guang, Gong Wei. Influence of well structure on efficiency of organic light-emitting diodes. Acta Physica Sinica, 2010, 59(11): 8093-8097. doi: 10.7498/aps.59.8093
    [17] Chen Yi-Xin, Shen Guang-Di, Han Jin-Ru, Li Jian-Jun, Guo Wei-Ling. Study of light efficiency and lifetime of LED with different surface structures. Acta Physica Sinica, 2010, 59(1): 545-549. doi: 10.7498/aps.59.545
    [18] Wang Xiao-Xia, Liao Xian-Heng, Luo Ji-Run, Zhao Qing-Lan, Zhang Xiao-Wei. Lifetime of a new type of reservoir oxide cathode. Acta Physica Sinica, 2009, 58(2): 1280-1286. doi: 10.7498/aps.58.1280
    [19] Wang Fang, Zhu Qi-Hua, Jiang Dong-Bin, Zhang Qing-Quan, Deng Wu, Jing Feng. Optimization of optical design of the master amplifier in multi-pass off-axis amplification system. Acta Physica Sinica, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] Lu Xin, Xi Ting-Ting, Li Ying-Jun, Zhang Jie. Lifetime of the plasma channel produced by ultra-short and ultra-high power laser pulse in the air. Acta Physica Sinica, 2004, 53(10): 3404-3408. doi: 10.7498/aps.53.3404
Metrics
  • Abstract views:  8250
  • PDF Downloads:  227
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2019
  • Accepted Date:  24 February 2020
  • Published Online:  05 May 2020

/

返回文章
返回