Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of angle-cut collimator based design in high-energy proton radiography

Chen Feng Xu Hai-Bo Zheng Na Jia Qing-Gang She Ruo-Gu Li Xing-E

Citation:

Theoretical study of angle-cut collimator based design in high-energy proton radiography

Chen Feng, Xu Hai-Bo, Zheng Na, Jia Qing-Gang, She Ruo-Gu, Li Xing-E
PDF
HTML
Get Citation
  • The angle-cut collimator plays an important role in high-energy proton radiography. By using the collimator, the image contrast can be improved, and the material diagnosis and density reconstruction can be realized through secondary imaging. As all these techniques depend on the flux value, it is of great significance to reduce the error of the detected flux value. The ideal collimator is a much thin surface, but thick enough to block protons outside the collimation region. It is designed by stretching the aperture of the collimation plane. The shape is cylindrical, and it will increase the error of the flux value with the angle truncation. The initial bunch is defined and the phase diagram of the bunch within the angle-cut is ideal in the theoretical model. The equation of designing the collimator is given by theoretical analysis. It is given by the transfer matrix, the radius of the object and the angle-cut. The pore structure is oval-shaped by calculating and simulating. The proton imaging system of 1.6 GeV is established by Geant4 program, and the detector is ideal. The round copper plate and the concentric spheres are chosen as objects respectively. The parameters of the designed collimator is given by this method. The ideal collimator, tensile collimator and designed collimator are used in simulation, the radius of object is 5 cm and the angle-cut is 2 mrad and 3.5 mrad. The results show that when using the ideal and the designed angle-cut collimator, the flux distributions are in good agreement, while when using the tensile collimator, the result is quite different from that obtained by using the ideal collimator. Therefore, the collimator designed by this method can effectively reduce the error of the detected flux value.
      Corresponding author: Xu Hai-Bo, 13641017929@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675021) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11805018)
    [1]

    Gavton A, Morris C L, Ziock H J, et al. 1996 Los Alamos National Report 96 420

    [2]

    Mottershead C T, Zumbro J D 1997 Proceedings of the 1997 Particle Accelerator Conference Vancouver B C, Canada, May 12–16, 1997 p1397

    [3]

    Jason A J, Barlow D B, Blind B, Kelley J P, Lysenko W P, Neri F, Walstrom P L, Waynert J, Schulze M 2001 Proceedings of the 2001 Particle Accelerator Conference Chicago, USA, June 18–22, 2001 p3374

    [4]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Meth. Phys. Res., Sect. A 424 84

    [5]

    Rigg P A, Schwartz C L, Hixson R S, Hogan G E, Kwiatkowski K K, Mariam F G, Marr-Lyon M, Merrill F E, Morris C L, Rightly P, Sauders A, Tupa D 2008 Phys. Rev. B 77 220101Google Scholar

    [6]

    Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905Google Scholar

    [7]

    Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319Google Scholar

    [8]

    Golubev A A, Demidov V S, Demidova E V, Dudin S V, Kantsyrev A V, Kolesnikov S A, Mintsev V B, Smirnov G N, Turtikov V I, Utikin A V, Fortov V E, Sharkov B Y 2010 Tech. Phys. Lett. 36 177Google Scholar

    [9]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303Google Scholar

    [10]

    Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC2016 Proceedings of the 21 st International Conference on Cyclotrons and their Applications Zurich, Switzerland, September 11–16, 2016 p401

    [11]

    Merrill F E 2015 Rev. Accel. Sci. Technol. 8 165Google Scholar

    [12]

    Sheng L N, Zhao Y T, Yang G J, Wei T 2014 Laser Part. Beams 32 651Google Scholar

    [13]

    Wei T, Yang G J, Li Y D, et al. 2014 Chin. Phys. C 38 087003Google Scholar

    [14]

    Aufderheide M B, Park H, Hartouni E P 1999 AIP Conference Proceedings Sydney, Australia, June 28–July 2, 1999 p497

    [15]

    Zumbro J D, Acuff A, Bull J S, et al. 2005 Radiat. Prot. Dosim. 117 447

    [16]

    Fesseha G, Mariam, John P 2011 2011 High-Energy-Proton Microscopy Workshop Summary Report New Mexico, USA, October 27–28, 2011 p54

    [17]

    Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energ. 114 359Google Scholar

    [18]

    Varentsov D, Bogdanov A, Demidov V S 2013 Phys. Medica 29 208Google Scholar

    [19]

    Yan Y, Sheng L N, Huang Z W, et al. 2015 Laser Part. Beams 33 439Google Scholar

    [20]

    Kantsyrev A V, Skoblyakov A V, Bogdanov A V 2018 J. Phys.: Conf. Ser. 946 012019Google Scholar

    [21]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Meth. Phys. Res. Sect. A 506 250Google Scholar

    [22]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

  • 图 1  质子成像系统示意图

    Figure 1.  Schematic diagram of proton radiography system.

    图 2  一定截断角以内的质子束团在通过准直空间时的形状变化 (a) z = 0 m; (b) z = 0.6 m; (c) z = 1.2 m; (d) z = 1.8 m; (e) z = 2.4 m

    Figure 2.  Shape changed of proton bunch within certain angle-cuts as it passes through the collimation space: (a) z = 0 m; (b) z = 0.6 m; (c) z = 1.2 m; (d) z = 1.8 m; (e) z = 2.4 m.

    图 3  质子成像系统参数示意图

    Figure 3.  Diagram of parameters of proton radiography system.

    图 4  截断角为2 mrad、客体尺寸为5 cm时的目标束团边界线

    Figure 4.  Boundary lines of the target bunch when the angle-cut is 2 mrad and the object size is 5 cm.

    图 5  端口处的孔径值随截断角的变化 (a) $z = 20\;{\rm{cm}}$; (b) $z = 120\;{\rm{cm}}$

    Figure 5.  Aperture size varies with the angle-cut at the ports: (a) $z = 20\;{\rm{cm}}$; (b) $z = 120\;{\rm{cm}}$.

    图 6  准直器孔径的形状 (a) x-y平面; (b) y-z平面

    Figure 6.  Shape of aperture of the collimator: (a) x-y plane; (b) y-z plane.

    图 7  客体示意图 (a)铜板; (b)同心球体

    Figure 7.  Diagram of the object: (a) The round copper plate; (b) the concentric spheres.

    图 8  通过铜板的通量分布 (a)截断角为2 mrad; (b)截断角为3.5 mrad

    Figure 8.  Flux distribution after passing the round copper plate: (a) Angle-cut of 2 mrad; (b) angle-cut of 3.5 mrad.

    图 9  通过同心球的通量分布 (a)截断角为2 mrad; (b)截断角为3.5 mrad

    Figure 9.  Flux distribution after passing the concentric spheres: (a) Angle-cut of 2 mrad; (b) angle-cut of 3.5 mrad.

    表 1  1.6 GeV质子成像系统参数

    Table 1.  Parameters of the proton radiography system of 1.6 GeV.

    s/ml/mG/T·m–1t/m
    1.20.88.090.5
    DownLoad: CSV

    表 2  准直器的孔径参数

    Table 2.  Aperture parameters of the collimator.

    截断角/mrad准直器类型前端/cm 后端/cm厚度/m外半径/m材料
    xy xy
    2理想型 0.6110–73Al
    拉伸型0.61 0.611 & 0.43W
    设计型2.042.46 0.6113W
    3.5理想型 1.0710–73Al
    拉伸型1.07 1.071 & 0.43W
    设计型2.343.08 1.0713W
    DownLoad: CSV
  • [1]

    Gavton A, Morris C L, Ziock H J, et al. 1996 Los Alamos National Report 96 420

    [2]

    Mottershead C T, Zumbro J D 1997 Proceedings of the 1997 Particle Accelerator Conference Vancouver B C, Canada, May 12–16, 1997 p1397

    [3]

    Jason A J, Barlow D B, Blind B, Kelley J P, Lysenko W P, Neri F, Walstrom P L, Waynert J, Schulze M 2001 Proceedings of the 2001 Particle Accelerator Conference Chicago, USA, June 18–22, 2001 p3374

    [4]

    King N S P, Ables E, Adams K, et al. 1999 Nucl. Instrum. Meth. Phys. Res., Sect. A 424 84

    [5]

    Rigg P A, Schwartz C L, Hixson R S, Hogan G E, Kwiatkowski K K, Mariam F G, Marr-Lyon M, Merrill F E, Morris C L, Rightly P, Sauders A, Tupa D 2008 Phys. Rev. B 77 220101Google Scholar

    [6]

    Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905Google Scholar

    [7]

    Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319Google Scholar

    [8]

    Golubev A A, Demidov V S, Demidova E V, Dudin S V, Kantsyrev A V, Kolesnikov S A, Mintsev V B, Smirnov G N, Turtikov V I, Utikin A V, Fortov V E, Sharkov B Y 2010 Tech. Phys. Lett. 36 177Google Scholar

    [9]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303Google Scholar

    [10]

    Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC2016 Proceedings of the 21 st International Conference on Cyclotrons and their Applications Zurich, Switzerland, September 11–16, 2016 p401

    [11]

    Merrill F E 2015 Rev. Accel. Sci. Technol. 8 165Google Scholar

    [12]

    Sheng L N, Zhao Y T, Yang G J, Wei T 2014 Laser Part. Beams 32 651Google Scholar

    [13]

    Wei T, Yang G J, Li Y D, et al. 2014 Chin. Phys. C 38 087003Google Scholar

    [14]

    Aufderheide M B, Park H, Hartouni E P 1999 AIP Conference Proceedings Sydney, Australia, June 28–July 2, 1999 p497

    [15]

    Zumbro J D, Acuff A, Bull J S, et al. 2005 Radiat. Prot. Dosim. 117 447

    [16]

    Fesseha G, Mariam, John P 2011 2011 High-Energy-Proton Microscopy Workshop Summary Report New Mexico, USA, October 27–28, 2011 p54

    [17]

    Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energ. 114 359Google Scholar

    [18]

    Varentsov D, Bogdanov A, Demidov V S 2013 Phys. Medica 29 208Google Scholar

    [19]

    Yan Y, Sheng L N, Huang Z W, et al. 2015 Laser Part. Beams 33 439Google Scholar

    [20]

    Kantsyrev A V, Skoblyakov A V, Bogdanov A V 2018 J. Phys.: Conf. Ser. 946 012019Google Scholar

    [21]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Meth. Phys. Res. Sect. A 506 250Google Scholar

    [22]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

  • [1] Wang Hui-Lin, Liao Yan-Lin, Zhao Yan, Zhang Wen, Chen Zheng-Gen. Simulation study of quasi-monoenergetic high-energy proton beam based on multiple laser beams driving. Acta Physica Sinica, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [3] You Zhi-Ming, Wang Jie, Gao Yong, Fan Jia-Kun, Zhang Jing, Hu Yao-Cheng, Wang Sheng, Xu Zhang-Lian, Zhang Qi. Gas density evolution in beam screen of super proton-proton collider. Acta Physica Sinica, 2021, 70(16): 166802. doi: 10.7498/aps.70.20201594
    [4] Chen Feng, Hao Jian-Hong, Xu Hai-Bo. Optimization of proton imaging system including fringe field of magnetic lens. Acta Physica Sinica, 2021, 70(2): 022901. doi: 10.7498/aps.70.20201141
    [5] Li Yao-Jun, Yue Dong-Ning, Deng Yan-Qing, Zhao Xu, Wei Wen-Qing, Ge Xu-Lei, Yuan Xiao-Hui, Liu Feng, Chen Li-Ming. Proton imaging of relativistic laser-produced near-critical-density plasma. Acta Physica Sinica, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [6] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [7] Ju An-An,  Guo Hong-Xia,  Zhang Feng-Qi,  Guo Wei-Xin,  Ouyang Xiao-Ping,  Wei Jia-Nan,  Luo Yin-Hong,  Zhong Xiang-Li,  Li Bo,  Qin Li. Experimental study about single event functional interrupt of ferroelectric random access memory induced by 30-90 MeV proton. Acta Physica Sinica, 2018, 67(23): 237803. doi: 10.7498/aps.67.20181225
    [8] Chen Feng, Zheng Na, Xu Hai-Bo. Density reconstruction based on energy loss in proton radiography. Acta Physica Sinica, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [9] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [10] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [11] Wang Xin-Yi, Fan Quan-Ping, Wei Lai, Yang Zu-Hua, Zhang Qiang-Qiang, Chen Yong, Peng Qian, Yan Zhuo-Yang, Xiao Sha-Li, Cao Lei-Feng. High-resolution reconstruction of Fresnel zone plate coded imaging. Acta Physica Sinica, 2017, 66(5): 054203. doi: 10.7498/aps.66.054203
    [12] Qiang Fan, Zhu Jing-Ping, Zhang Yun-Yao, Zhang Ning, Li Hao, Zong Kang, Cao Ying-Yu. Reconstruction of polarization parameters in channel modulated polarization imaging system. Acta Physica Sinica, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [13] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Guo Xiao-Qiang, Zhao Wen, Ding Li-Li, Wang Yuan-Ming. Angular dependence of proton single event multiple-cell upsets in nanometer SRAM. Acta Physica Sinica, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [14] He Xiao-Liang, Liu Cheng, Wang Ji-Cheng, Wang Yue-Ke, Gao Shu-Mei, Zhu Jian-Qiang. Study on the periodic error in ptychographic iterative engine imaging. Acta Physica Sinica, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [15] Nie Yong-Fa, Zhu Hai-Chao. Acoustic field reconstruction using source strength density acoustic radiation modes. Acta Physica Sinica, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [16] Wang Lin-Yuan, Liu Hong-Kui, Li Lei, Yan Bin, Zhang Han-Ming, Cai Ai-Long, Chen Jian-Lin, Hu Guo-En. Review of sparse optimization-based computed tomography image reconstruction from few-view projections. Acta Physica Sinica, 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [17] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [18] Yuan Zhi-Lin, Yang Rui, Yang Liu, Song Li-Dan, Sun Li-Ping, Ma Yu-Hong, Wang Meng, Chen Ding-Kang, Guo Jin-Ping, Tang Li-Hong. Study of collimator array based on single collimating lens. Acta Physica Sinica, 2012, 61(18): 184217. doi: 10.7498/aps.61.184217
    [19] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [20] Zhang Bai-Gang, Yao Jian-Quan, Lu Yang, Ji Feng, Zhang Tie-Li, Xu De-Gang, Wang Peng, Xu Ke-Xin. Pump source angle tuning in quasi-phase matched optical parametric oscillator. Acta Physica Sinica, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
Metrics
  • Abstract views:  5584
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2019
  • Accepted Date:  28 November 2019
  • Published Online:  05 February 2020

/

返回文章
返回