Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell

Xu Han Zhang Lu Dang Zheng

Citation:

Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell

Xu Han, Zhang Lu, Dang Zheng
PDF
HTML
Get Citation
  • Patterned electrodes are widely used in the development of novel electrodes of solid oxide fuel cells (SOFCs) because of their well-controlled geometries, distinguishable catalytically active sites and simple transport paths. In the existing studies the patterned electrodes are usually adopted to reveal relevant reaction mechanisms and to investigate the electrochemical characteristics of new materials of SOFCs, however, the effects of electrode geometry are not taken into consideration. In the present paper, a lattice Boltzmann model for simulating the charge transport and electrochemical reaction in an SOFC patterned anode is established, and the key dimensionless parameters governing the above electrode process are deduced. This model is then used to investigate the effects of the key dimensionless parameters on the electrochemical performance of a patterned anode. More importantly, the influences of the patterned anode geometry on the coupling of the charge transport and electrochemical reaction are unraveled. According to the sensitivity of the electrode performance to the dimensionless parameters, a dimensionless phase map, which is divided into maximum area, transition area and minimum area, is built. It is concluded that the transition area, in which the electrode performance varies dramatically with the parameters of design and operation, is regarded as the optimal range for studying the relevant reaction mechanism. Meanwhile, it is found that although the electron transport does not restrict the electrode performance, the moderate decrease of the height-to-width ratio of electronic conductor is capable of enlarging the transition area, which is beneficial to revealing the relevant reaction mechanism. Conversely, the ion transport is the rate-limiting step, however, the transition area remains unchanged under different ionic conductor geometries. The present numerical method and conclusions could offer guidance for rationally designing and operating the patterned electrodes.
      Corresponding author: Xu Han, xuhanxh@xjtu.edu.cn
    [1]

    Chen Y, deGlee B, Tang Y, Wang Z, Zhao B, Wei Y, Zhang L, Yoo S, Pei K, Kim J, Ding Y, Hu P, Tao F, Liu M 2018 Nat. Energy 3 1042Google Scholar

    [2]

    陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬 2018 物理学报 67 088202Google Scholar

    Chen M N, Zhang L, Gao H Y, Xuan Y, Ren J F, Lin Z J 2018 Acta Phys. Sin. 67 088202Google Scholar

    [3]

    Mahato N, Banerjee A, Gupta A, Omar S, Balani K 2015 Prog. Mater Sci. 72 141Google Scholar

    [4]

    Li W, Shi Y, Luo Y, Wang Y, Cai N 2015 J. Power Sources 276 26Google Scholar

    [5]

    Patel H, Tabish A, Comelli F, Aravind P 2015 Appl. Energy 154 912Google Scholar

    [6]

    Luo Y, Li W, Shi Y, Cai N 2017 J. Power Sources 366 93Google Scholar

    [7]

    Doppler M, Fleig J, Bram M, Opitz A 2018 J. Power Sources 380 46Google Scholar

    [8]

    Chen Y, Choi Y, Yoo S, Ding Y, Yan R, Pei K, Qu C, Zhang L, Chang I, Zhao B, Zhang Y, Chen H, Chen Y, Yang C, deGlee B, Murphy R, Liu J, Liu M 2018 Joule 2 938Google Scholar

    [9]

    Luo Y, Li W, Shi Y, Wang Y, Cai N 2017 Int. J. Hydrogen Energy 42 25130Google Scholar

    [10]

    Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y 2011 Mater. Today 14 534Google Scholar

    [11]

    Liu J, Ciucci F 2017 Phys. Chem. Chem. Phys. 19 26310Google Scholar

    [12]

    Patel H, Tabish A, Aravind P 2015 Electrochim. Acta 182 202Google Scholar

    [13]

    Yao W, Croiset E 2014 J. Power Sources 248 777Google Scholar

    [14]

    Yurkiv V, Utz A, Weber A, Ivers-Tiffée E, Volpp H R, Bessler W G 2012 Electrochim. Acta 59 573Google Scholar

    [15]

    Lynch M, Liu M 2010 J. Power Sources 195 5155Google Scholar

    [16]

    Vogler M, Bieberle-Hütter A, Gauckler L, Warnatz J, Bessler W G 2009 J. Electrochem. Soc. 156 B663Google Scholar

    [17]

    Lynch M, Mebane D, Liu Y, Liu M 2008 J. Electrochem. Soc. 155 B635Google Scholar

    [18]

    Qu Z P, Aravind P V, Boksteen S Z, Dekker N J J, Janssen A H H, Woudstra N, Verkooijen A H M 2011 Int. J. Hydrogen Energy 36 10209Google Scholar

    [19]

    Chan S H, Khor K A, Xia Z T 2001 J. Power Sources 93 130Google Scholar

    [20]

    Xu H, Chen Y, Kim J, Dang Z, Liu M 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [21]

    Feng D, Bao C, Gao T 2020 J. Power Sources. 449 227499Google Scholar

    [22]

    刘高洁, 郭照立, 施保昌 2016 物理学报 65 014702Google Scholar

    Liu G J, Guo Z L, Shi B C 2016 Acta Phys. Sin. 65 014702Google Scholar

  • 图 1  (a) 模式阳极结构示意图; (b) 本文计算区域与边界条件

    Figure 1.  (a) Schematic of a patterned anode; (b) computational domain and boundary conditions of the model in the present study.

    图 2  本文LB模型验证

    Figure 2.  Model validation of the present LB model.

    图 3  模式阳极在基准工况下的性能 (a) 整个阳极电势分布; (b) 电子导体与离子导体交界面(z/Hion = 1.0)电势分布; (c) 电子导体和离子导体分别在TPB处的电势分布; (d) 无量纲电势(0/RT)对无量纲平均电流密度(iav/i0)的影响; (e) 无量纲交换电流密度(iex/i0)对iav/i0的影响; (f) iex/i00/RTiav/i0的耦合影响; (g) 指导模式阳极设计与运行的无量纲相图

    Figure 3.  Patterned anode performance at standard case: (a) Potential distribution in the entire anode; (b) potential distribution at z/Hion = 1.0; (c) potential distribution at TPBs; (d) effect of dimensionless potential (0/RT) on dimensionless average current density (iav/i0); (e) effect of dimensionless exchange current density (iex/i0) on iav/i0; (f) combined effect of iex/i0 and 0/RT on iav/i0; (e) phase map generated based on panel (f) for rational design and operation of patterned anode.

    图 4  电子导体高宽比(Hele/Lele)对模式阳极性能的影响 (a) 不同电子导体高宽比下无量纲交换电流密度(iex/i0)与无量纲电势(0/RT)对无量纲平均电流密度(iav/i0)的耦合影响; (b) 不同电子导体高宽比下指导模式阳极设计与运行的无量纲相图

    Figure 4.  Effect of height-to-width ratio of electronic conductor (Hele/Lele) on patterned anode performance: (a) Combined effect of dimensionless exchange current density (iex/i0) and dimensionless potential (0/RT) on dimensionless average current density (iav/i0); (b) phase maps under different Hele/Lele generated based on panel (a) for rational design and operation of patterned anode.

    图 5  电子导体宽度与间距比(LeleL)对模式阳极性能的影响 (a) 不同电子导体宽度与间距比下无量纲交换电流密度(iex/i0)与无量纲电势(0/RT)对无量纲平均电流密度(iav/i0)的耦合影响; (b) 不同电子导体宽度与间距比下指导模式阳极设计与运行的无量纲相图

    Figure 5.  Effect of width-to-spacing ratio of electronic conductor (LeleL) on patterned anode performance: (a) Combined effect of dimensionless exchange current density (iex/i0) and dimensionless potential (0/RT) on dimensionless average current density (iav/i0); (b) phase maps under different LeleL generated based on panel (a) for rational design and operation of patterned anode.

    图 6  离子导体高宽比(Hion/Lion)对模式阳极性能的影响 (a) 不同离子导体高宽比下无量纲交换电流密度(iex/i0)与无量纲电势(0/RT)对无量纲平均电流密度(iav/i0)的耦合影响; (b) 不同离子导体高宽比下指导模式阳极设计与运行的无量纲相图

    Figure 6.  Effect of height-to-width ratio of ionic conductor (Hion/Lion) on patterned anode performance: (a) Combined effect of dimensionless exchange current density (iex/i0) and dimensionless potential (0/RT) on dimensionless average current density (iav/i0); (b) phase maps under different Hion/Lion generated based on panel (a) for rational design and operation of patterned anode.

    表 1  本文的边界条件

    Table 1.  Boundary conditions of the present study.

    坐标边界条件
    z* = 0ϕ* = 0
    z* = 1 + Hele/Hionϕ* = 1
    x* = 0, Lion/Hion,
    电子导体左右边界
    ${ {\partial \phi ^*} / {\partial x^* = 0} }$
    z* = 1 (非TPBs)${ {\partial \phi ^*} / {\partial z^* = 0} }$
    z* = 1 (TPBs)${\left. { {{i} }^*} \right|_{ {\rm{el} } } } = {\left. { - \sigma ^*\nabla \phi ^*} \right|_{ {\rm{el} } } } = {\left. { {{i} }^*} \right|_{ {\rm{ion} } } } = {\left. { - \nabla \phi ^*} \right|_{ {\rm{ion} } } }$
    DownLoad: CSV
  • [1]

    Chen Y, deGlee B, Tang Y, Wang Z, Zhao B, Wei Y, Zhang L, Yoo S, Pei K, Kim J, Ding Y, Hu P, Tao F, Liu M 2018 Nat. Energy 3 1042Google Scholar

    [2]

    陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬 2018 物理学报 67 088202Google Scholar

    Chen M N, Zhang L, Gao H Y, Xuan Y, Ren J F, Lin Z J 2018 Acta Phys. Sin. 67 088202Google Scholar

    [3]

    Mahato N, Banerjee A, Gupta A, Omar S, Balani K 2015 Prog. Mater Sci. 72 141Google Scholar

    [4]

    Li W, Shi Y, Luo Y, Wang Y, Cai N 2015 J. Power Sources 276 26Google Scholar

    [5]

    Patel H, Tabish A, Comelli F, Aravind P 2015 Appl. Energy 154 912Google Scholar

    [6]

    Luo Y, Li W, Shi Y, Cai N 2017 J. Power Sources 366 93Google Scholar

    [7]

    Doppler M, Fleig J, Bram M, Opitz A 2018 J. Power Sources 380 46Google Scholar

    [8]

    Chen Y, Choi Y, Yoo S, Ding Y, Yan R, Pei K, Qu C, Zhang L, Chang I, Zhao B, Zhang Y, Chen H, Chen Y, Yang C, deGlee B, Murphy R, Liu J, Liu M 2018 Joule 2 938Google Scholar

    [9]

    Luo Y, Li W, Shi Y, Wang Y, Cai N 2017 Int. J. Hydrogen Energy 42 25130Google Scholar

    [10]

    Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y 2011 Mater. Today 14 534Google Scholar

    [11]

    Liu J, Ciucci F 2017 Phys. Chem. Chem. Phys. 19 26310Google Scholar

    [12]

    Patel H, Tabish A, Aravind P 2015 Electrochim. Acta 182 202Google Scholar

    [13]

    Yao W, Croiset E 2014 J. Power Sources 248 777Google Scholar

    [14]

    Yurkiv V, Utz A, Weber A, Ivers-Tiffée E, Volpp H R, Bessler W G 2012 Electrochim. Acta 59 573Google Scholar

    [15]

    Lynch M, Liu M 2010 J. Power Sources 195 5155Google Scholar

    [16]

    Vogler M, Bieberle-Hütter A, Gauckler L, Warnatz J, Bessler W G 2009 J. Electrochem. Soc. 156 B663Google Scholar

    [17]

    Lynch M, Mebane D, Liu Y, Liu M 2008 J. Electrochem. Soc. 155 B635Google Scholar

    [18]

    Qu Z P, Aravind P V, Boksteen S Z, Dekker N J J, Janssen A H H, Woudstra N, Verkooijen A H M 2011 Int. J. Hydrogen Energy 36 10209Google Scholar

    [19]

    Chan S H, Khor K A, Xia Z T 2001 J. Power Sources 93 130Google Scholar

    [20]

    Xu H, Chen Y, Kim J, Dang Z, Liu M 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [21]

    Feng D, Bao C, Gao T 2020 J. Power Sources. 449 227499Google Scholar

    [22]

    刘高洁, 郭照立, 施保昌 2016 物理学报 65 014702Google Scholar

    Liu G J, Guo Z L, Shi B C 2016 Acta Phys. Sin. 65 014702Google Scholar

Metrics
  • Abstract views:  7536
  • PDF Downloads:  116
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2019
  • Accepted Date:  01 March 2020
  • Published Online:  05 May 2020

/

返回文章
返回