Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices

Liao Tian-Jun Lü Yi-Xiang

Citation:

Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices

Liao Tian-Jun, Lü Yi-Xiang
PDF
HTML
Get Citation
  • The application of thermophotovoltaic energy conversion device to recovery and utilization of high-grade thermal energy are limited by its irreversible loss. In this work, we reveal the source of irreversible loss and provide a strategy for improving the performance of thermophotovoltaic energy conversion device. The maximum efficiency of thermophotovoltaic energy conversion device under ideal condition is determined by using the theory of semiconductor physics and Planck thermal radiation. Moreover, the effects of non-radiative recombination and irreversible heat transfer loss on the electrical, optical, and thermal characteristics of thermophotovoltaic device are considered to predict the optimal performance of thermophotovoltaic device. The optimal region of power density, efficiency, and photon cut-off energy are determined. The obtained results show that the open-circuit voltage, short-circuit current density and efficiency of non-ideal device are lower than those of ideal device. The voltage output and photon cut-off energy of thermophotovoltaic device and heat source temperature can be optimized to improve the power density and efficiency of the device. It is found that the theoretical results are in good agreement with the experimental results, which can provide some guidances fordeveloping the practical thermophotovoltaic devices.
      Corresponding author: Liao Tian-Jun, liaotianjunxmu@hotmail.com
    [1]

    于海童, 刘东, 杨震, 段远源 2018 物理学报 67 024209Google Scholar

    Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar

    [2]

    吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军 2015 物理学报 64 096102Google Scholar

    Wu X L, Zhang D X Cai H K, Zhou Y, Ni J, Zhang J J 2015 Acta Phys. Sin. 64 096102Google Scholar

    [3]

    Datas A, Martí A 2017 Sol. Energy Mater. Sol. Cells 161 285Google Scholar

    [4]

    Corey M., Massoud K 2019 Appl. Phys. Rev. 6 021305Google Scholar

    [5]

    Wang Y, Liu H, Zhu J 2019 APL Mater. 7 080906Google Scholar

    [6]

    Lenert A, Bierman D M, Nam Y, Chan W R, Celanović I, Soljačić M, et al. 2014 Nat. Nanotechnol. 9 126Google Scholar

    [7]

    Datas A 2015 Sol. Energy Mater. Sol. Cells 134 275Google Scholar

    [8]

    Tedah I A O, Maculewicz F, Wolf D E, Schmechel R 2019 J. Phys. D: Appl. Phys. 52 275501Google Scholar

    [9]

    Hong Y, Otten M, Min M, Stephen K G, David P N 2019 Appl. Phys. Lett. 114 053901Google Scholar

    [10]

    Burger T, Fan D, Lee K, Lenert A 2018 ACS Photonics 5 2748Google Scholar

    [11]

    Song J, Lim M, Lee S S, Lee B J 2019 Phys. Rev. Appl. 11 044040Google Scholar

    [12]

    Wang R Q, Lu J C, Jiang J H 2019 Phys. Rev. Applied 12 044038Google Scholar

    [13]

    Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotech. 13 806Google Scholar

    [14]

    Liao T, Yang Z, Chen X, Chen J 2019 IEEE Transac. Electron Devices 66 1386Google Scholar

    [15]

    Liao T, Zhang X, Chen X, Chen J 2019 J. Appl. Phys. 125 203103Google Scholar

    [16]

    Liao T, Du J, Guo J, Chen X, Chen J 2019 J. Phys. D: Appl. Phys. 53 055503

    [17]

    Datas A, Vaillon R 2019 Appl. Phys. Lett. 114 133501Google Scholar

    [18]

    Datas A, Vaillon R 2019 Nano Energy 61 10Google Scholar

    [19]

    Chubb D L, Good B S 2018 Sol. Energy 159 760Google Scholar

    [20]

    龙军华, 谭明, 季莲, 肖梦, 吴渊渊, 陆书龙, 代盼, 李雪飞, 金山, 邢志伟, 鲁姣, 杨文献 2018 中国科学: 物理学力学天文学 48 117301Google Scholar

    Long J H, Tan M, Ji L, Xiao M, Wu Y Y, Lu S L, Dai P, Li X F, Jin S, Xing Z W, Lu J, Yang W X 2018 Sci. Sin.-Phys. Mech. Astron. 48 117301Google Scholar

    [21]

    Liao T, Chen X, Yang Z, Lin B, Chen J 2016 Energy Conver. Manage. 126 205Google Scholar

    [22]

    Chen K, Santhanam P, Sandhu S, Zhu L, Fan S 2015 Phys. Rev. B 91 134301Google Scholar

    [23]

    Utlu Z 2019 Int. J. Low-Carbon Technologies https://doi.org/ 10.1093/ijlct/ctz049 [2019-12-1]

  • 图 1  TPV器件的示意图

    Figure 1.  Schematic diagram of a TPV device.

    图 2  效率η随输出电压V变化曲线

    Figure 2.  The curves of the efficiency η varying with the voltage V for given three values ${T_{\rm{E}}}$.

    图 3  非理想和理想光伏电池特性随${T_{\rm{E}}}$变化的关系曲线 (a)开路电压; (b)短路电流密度

    Figure 3.  The curves of non-ideal and ideal photovoltaic cells varying with ${T_{\rm{E}}}$: (a) open-circuit voltages; (b) short-circuit current densities.

    图 4  (a)功率密度和(b)效率随${T_{\rm{E}}}$V变化三维曲面图

    Figure 4.  (a) The 3D graphs of power density and (b) efficiency as a function of ${T_{\rm{E}}}$ and V.

    图 5  优化功率密度${P_{{\rm{opt}}}}$和效率${\eta _{{\rm{opt}}}}$随光子截止能量${\varepsilon _{\rm{H}}}$变化的关系曲线图, 其中${T_{\rm{E}}} = 1500\, {\rm{K}}$

    Figure 5.  Optimal power density ${P_{{\rm{opt}}}}$ and efficiency ${\eta _{{\rm{opt}}}}$ as a function of photons’ cut-off energy ${\varepsilon _{\rm{H}}}$, where ${T_{\rm{E}}} = 1500\, {\rm{K}}.$

  • [1]

    于海童, 刘东, 杨震, 段远源 2018 物理学报 67 024209Google Scholar

    Yu H T, Liu D, Yang Z, Duan Y Y 2018 Acta Phys. Sin. 67 024209Google Scholar

    [2]

    吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军 2015 物理学报 64 096102Google Scholar

    Wu X L, Zhang D X Cai H K, Zhou Y, Ni J, Zhang J J 2015 Acta Phys. Sin. 64 096102Google Scholar

    [3]

    Datas A, Martí A 2017 Sol. Energy Mater. Sol. Cells 161 285Google Scholar

    [4]

    Corey M., Massoud K 2019 Appl. Phys. Rev. 6 021305Google Scholar

    [5]

    Wang Y, Liu H, Zhu J 2019 APL Mater. 7 080906Google Scholar

    [6]

    Lenert A, Bierman D M, Nam Y, Chan W R, Celanović I, Soljačić M, et al. 2014 Nat. Nanotechnol. 9 126Google Scholar

    [7]

    Datas A 2015 Sol. Energy Mater. Sol. Cells 134 275Google Scholar

    [8]

    Tedah I A O, Maculewicz F, Wolf D E, Schmechel R 2019 J. Phys. D: Appl. Phys. 52 275501Google Scholar

    [9]

    Hong Y, Otten M, Min M, Stephen K G, David P N 2019 Appl. Phys. Lett. 114 053901Google Scholar

    [10]

    Burger T, Fan D, Lee K, Lenert A 2018 ACS Photonics 5 2748Google Scholar

    [11]

    Song J, Lim M, Lee S S, Lee B J 2019 Phys. Rev. Appl. 11 044040Google Scholar

    [12]

    Wang R Q, Lu J C, Jiang J H 2019 Phys. Rev. Applied 12 044038Google Scholar

    [13]

    Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotech. 13 806Google Scholar

    [14]

    Liao T, Yang Z, Chen X, Chen J 2019 IEEE Transac. Electron Devices 66 1386Google Scholar

    [15]

    Liao T, Zhang X, Chen X, Chen J 2019 J. Appl. Phys. 125 203103Google Scholar

    [16]

    Liao T, Du J, Guo J, Chen X, Chen J 2019 J. Phys. D: Appl. Phys. 53 055503

    [17]

    Datas A, Vaillon R 2019 Appl. Phys. Lett. 114 133501Google Scholar

    [18]

    Datas A, Vaillon R 2019 Nano Energy 61 10Google Scholar

    [19]

    Chubb D L, Good B S 2018 Sol. Energy 159 760Google Scholar

    [20]

    龙军华, 谭明, 季莲, 肖梦, 吴渊渊, 陆书龙, 代盼, 李雪飞, 金山, 邢志伟, 鲁姣, 杨文献 2018 中国科学: 物理学力学天文学 48 117301Google Scholar

    Long J H, Tan M, Ji L, Xiao M, Wu Y Y, Lu S L, Dai P, Li X F, Jin S, Xing Z W, Lu J, Yang W X 2018 Sci. Sin.-Phys. Mech. Astron. 48 117301Google Scholar

    [21]

    Liao T, Chen X, Yang Z, Lin B, Chen J 2016 Energy Conver. Manage. 126 205Google Scholar

    [22]

    Chen K, Santhanam P, Sandhu S, Zhu L, Fan S 2015 Phys. Rev. B 91 134301Google Scholar

    [23]

    Utlu Z 2019 Int. J. Low-Carbon Technologies https://doi.org/ 10.1093/ijlct/ctz049 [2019-12-1]

Metrics
  • Abstract views:  5649
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2019
  • Accepted Date:  17 December 2019
  • Published Online:  05 March 2020

/

返回文章
返回