Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Internal dynamic detection of soliton molecules in Ti:sapphire femtosecond laser

Zhou Feng Cai Yu Zou De-Feng Hu Ding-Tong Zhang Ya-Jing Song You-Jian Hu Ming-Lie

Citation:

Internal dynamic detection of soliton molecules in Ti:sapphire femtosecond laser

Zhou Feng, Cai Yu, Zou De-Feng, Hu Ding-Tong, Zhang Ya-Jing, Song You-Jian, Hu Ming-Lie
PDF
HTML
Get Citation
  • Soliton is a universal format of nonlinear wave propagation in nature. Soliton can maintain its shape during propagation. This unique property has been widely observed in plasma physics, high energy electromagnetics, hydrodynamics, and nonlinear optics. Soliton interactions can reflect collective dynamic behaviors in complex nonlinear systems, showing significant basic research value. Passive mode-locked laser is an ideal platform for studying soliton interaction. The attraction and repulsion between two optical solitons can form soliton molecules. Their properties have been intensively studied by optical spectral analysis. However, conventional optical spectrum analyzers show low resolution and long average time. Time-stretched dispersive Fourier transformation (TS-DFT) is an emerging-powerful measurement technology, which can map the spectrum of an optical pulse to a temporal waveform under sufficient dispersion. The TS-DFT makes it possible to detect the dynamics of the solitons in real time. Based on TS-DFT, the internal dynamics of the solitons in Ti:sapphire femtosecond laser is studied in experiment. By changing the pump power, the stable soliton molecules with a separation of 180 fs and the weak phase oscillatory soliton molecules with a separation of 105 fs are observed. The amplitude in the weak oscillation state is merely 0.05 rad. We also find that the soliton molecules in stable state can transform into phase sliding state under environmental perturbation. These optical soliton molecules with a binding separation of 100 fs are of great significance for studying the short-range nonlinear interactions of solitons.
      Corresponding author: Song You-Jian, yjsong@tju.edu.cn
    [1]

    Kivshar Y S, Agrawal G P 2003 Optical Solitons: from Fibers to Photonic Crystals (SanDiego: Academic Press) p5

    [2]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [3]

    Melo F, Douady S 1993 Phys. Rev. Lett. 71 3283Google Scholar

    [4]

    Denschlag J 2000 Science 287 97Google Scholar

    [5]

    Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G 2010 Nat. Phys. 6 790Google Scholar

    [6]

    黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 物理学报 63 084202Google Scholar

    Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar

    [7]

    Shi H S, Song Y J, Wang Q Y, Zhao L M, Hu M L 2018 Opt. Lett. 43 1623Google Scholar

    [8]

    徐佳, 吴思达, 刘江, 孙若愚, 王璞 2013 中国激光 40 0702003Google Scholar

    Xu J, Wu S D, Liu J, Sun R Y, Wang P 2013 Chin. J. Lasers 40 0702003Google Scholar

    [9]

    Pang M, He W, Jiang X, Russell P S J 2016 Nat. Photonics 10 454Google Scholar

    [10]

    王光斗, 杨光, 刘艳格, 王志 2017 中国激光 44 83

    Wang G D, Yang G, Liu Y G, Wang Z 2017 Chin. J. Lasers 44 83

    [11]

    Huang Q, Wang T, Zou C, AlAraimi M, Rozhin A, Mou C 2018 Chin. Opt. Lett. 16 020019Google Scholar

    [12]

    Zhao C, Huang Q, Al Araimi M, Rozhin A, Sergeyev S, Mou C 2019 Chin. Opt. Lett. 17 020012Google Scholar

    [13]

    Hause A, Hartwig H, Böhm M, Mitschke F 2008 Phys. Rev. A 78 63817Google Scholar

    [14]

    Wang Z Q, Nithyanandan K, Coillet A, Tchofo-Dinda P, Grelu P 2019 Nat. Commun. 10 830Google Scholar

    [15]

    王志, 贺瑞敬, 刘艳格 2019 中国激光 46 13

    Wang Z, He R J, Liu Y G 2019 Chin. J. Lasers 46 13

    [16]

    魏志伟, 刘萌, 崔虎, 罗爱平, 徐文成, 罗智超 2019 激光与光电子学进展 56 79

    Wei Z W, Liu M, Cui H, Luo A P, Xu W C, Luo Z C 2019 Laser & Optoelectronics Progress 56 79

    [17]

    He W, Pang M, Yeh D H, Huang J, Menyuk C R, Russell P S J 2019 Nat. Commun. 10 1Google Scholar

    [18]

    Liu X M, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar

    [19]

    Liu X M, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar

    [20]

    Peng J, Boscolo S, Zhao Z, Zeng H 2019 Sci. Adv. 5 eaax1110Google Scholar

    [21]

    Goda K, Jalali B 2013 Nat. Photonics 7 102Google Scholar

    [22]

    Goda K, Solli D R, Tsia K K, Jalali B 2009 Phys. Rev. A 80 043821Google Scholar

    [23]

    Malomed BA 1991 Phys. Rev. A 44 6954Google Scholar

    [24]

    Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P, Grelu P 2017 Phys. Rev. Lett. 118 243901Google Scholar

    [25]

    Liu X M, Yao X K, Cui Y D 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [26]

    廖睿, 文锦辉, 刘智刚, 邓莉, 赖天树, 林位株 2002 中国激光 29 53

    Liao R, Wen J H, Liu Z G, Deng L, Lai T S, Lin W Z 2002 Chin. J. Lasers 29 53

    [27]

    王胭脂, 邵建达, 董洪成, 晋云霞, 王清月 2011 物理学报 60 018101Google Scholar

    Wang Y Z, Shao J D, Dong H C, Jin Y X, Wang Q Y 2011 Acta Phys. Sin. 60 018101Google Scholar

    [28]

    范海涛, 王胭脂, 王兆华, 叶蓬, 胡国行, 秦爽, 何会军, 易葵, 邵建达, 魏志义 2015 物理学报 64 144204Google Scholar

    Fan H T, Wang Y Z, Wang Z H, Ye P, Hu G H, Qin S, He H J, Yi K, Shao J D, Wei Z Y 2015 Acta Phys. Sin. 64 144204Google Scholar

    [29]

    Herink G, Kurtz F, Jalali B, Solli D R, Ropers C 2017 Science 356 50Google Scholar

    [30]

    Lederer M J, Luther-Davies B, Tan H H, Jagadish C, Soto-Crespo J M 1999 J. Opt. Soc. Am. B 16 895Google Scholar

    [31]

    Han X, Wu J, Zeng H 2008 Opt. Express 16 3686Google Scholar

    [32]

    Kurtz F, Ropers C, Herink G 2020 Nat. Photonics 14 9Google Scholar

    [33]

    Zavyalov A, Iliew R, Egorov O, Lederer F 2009 Phys. Rev. A 79 053841Google Scholar

  • 图 1  基于钛宝石激光器的TS-DFT实验装置图 (OC, 输出耦合镜; P, 棱镜对; CM, 啁啾镜对; L, 透镜; Ti:S, 钛宝石晶体; M, 平面镜; FC, 光纤耦合器; SMF, 单模光纤; PD, 光电探测器; OSC, 高速示波器)

    Figure 1.  TS-DFT experimental setup based on Ti: sapphire laser (OC, output coupler; P, prim; CM, chirped mirror; L, lens; Ti:S, Ti:sapphire; M, mirror; FC, fiber coupler; SMF, single-mode fiber; PD, photodetecter; OSC, high-speed oscilloscope).

    图 2  实时观察105 fs时间间隔孤子分子参数图 (a) 孤子分子的光谱演化图样和对应的单帧光谱图; (b) 自相关的演化图和对应的单帧自相关曲线; (c) 相对相位演化图; (d) 光谱仪与DFT测到的光谱对比图

    Figure 2.  Experimental real-time observation soliton molecules with a separation of 105 fs: (a) Interferograms of a soliton bound state and its single-shot spectrum; (b) the field autocorrelations of the momentary bound state; (c) relative phase evolution diagram; (d) optical spectrum measured by OSA and DFT.

    图 3  实时观察180 fs时间间隔孤子分子数据图 (a) 孤子分子的光谱演化图; (b)自相关演化图; (c)相对相位演化图; (d)光谱仪与DFT测到的光谱对比图

    Figure 3.  Experimental real-time observation stable soliton molecules with a separate of 180 fs: (a) Interferograms of a soliton bound state; (b) the field autocorrelations of the momentary bound state; (c) relative phase evolution diagram; (d) optical spectra measured by OSA and DFT.

    图 4  滑动相位孤子分子数据图 (a) 光谱演化图; (b) 自相关演化图; (c) 相对相位演化图; (d)光谱仪与DFT测到的光谱对比图

    Figure 4.  Experimental real-time observation soliton molecules with a sliding phase: (a) Interferograms of a soliton bound state; (b) the field autocorrelations of the momentary bound state; (c) relative phase evolution diagram; (d) optical spectra measured by OSA and DFT.

    图 5  孤子分子的动态互作用平面

    Figure 5.  Dynamics of the SM mapped into the interaction plane.

  • [1]

    Kivshar Y S, Agrawal G P 2003 Optical Solitons: from Fibers to Photonic Crystals (SanDiego: Academic Press) p5

    [2]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [3]

    Melo F, Douady S 1993 Phys. Rev. Lett. 71 3283Google Scholar

    [4]

    Denschlag J 2000 Science 287 97Google Scholar

    [5]

    Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G 2010 Nat. Phys. 6 790Google Scholar

    [6]

    黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光 2014 物理学报 63 084202Google Scholar

    Huang S S, Wang Y G, Li H Q, Lin R Y, Yan P G 2014 Acta Phys. Sin. 63 084202Google Scholar

    [7]

    Shi H S, Song Y J, Wang Q Y, Zhao L M, Hu M L 2018 Opt. Lett. 43 1623Google Scholar

    [8]

    徐佳, 吴思达, 刘江, 孙若愚, 王璞 2013 中国激光 40 0702003Google Scholar

    Xu J, Wu S D, Liu J, Sun R Y, Wang P 2013 Chin. J. Lasers 40 0702003Google Scholar

    [9]

    Pang M, He W, Jiang X, Russell P S J 2016 Nat. Photonics 10 454Google Scholar

    [10]

    王光斗, 杨光, 刘艳格, 王志 2017 中国激光 44 83

    Wang G D, Yang G, Liu Y G, Wang Z 2017 Chin. J. Lasers 44 83

    [11]

    Huang Q, Wang T, Zou C, AlAraimi M, Rozhin A, Mou C 2018 Chin. Opt. Lett. 16 020019Google Scholar

    [12]

    Zhao C, Huang Q, Al Araimi M, Rozhin A, Sergeyev S, Mou C 2019 Chin. Opt. Lett. 17 020012Google Scholar

    [13]

    Hause A, Hartwig H, Böhm M, Mitschke F 2008 Phys. Rev. A 78 63817Google Scholar

    [14]

    Wang Z Q, Nithyanandan K, Coillet A, Tchofo-Dinda P, Grelu P 2019 Nat. Commun. 10 830Google Scholar

    [15]

    王志, 贺瑞敬, 刘艳格 2019 中国激光 46 13

    Wang Z, He R J, Liu Y G 2019 Chin. J. Lasers 46 13

    [16]

    魏志伟, 刘萌, 崔虎, 罗爱平, 徐文成, 罗智超 2019 激光与光电子学进展 56 79

    Wei Z W, Liu M, Cui H, Luo A P, Xu W C, Luo Z C 2019 Laser & Optoelectronics Progress 56 79

    [17]

    He W, Pang M, Yeh D H, Huang J, Menyuk C R, Russell P S J 2019 Nat. Commun. 10 1Google Scholar

    [18]

    Liu X M, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar

    [19]

    Liu X M, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar

    [20]

    Peng J, Boscolo S, Zhao Z, Zeng H 2019 Sci. Adv. 5 eaax1110Google Scholar

    [21]

    Goda K, Jalali B 2013 Nat. Photonics 7 102Google Scholar

    [22]

    Goda K, Solli D R, Tsia K K, Jalali B 2009 Phys. Rev. A 80 043821Google Scholar

    [23]

    Malomed BA 1991 Phys. Rev. A 44 6954Google Scholar

    [24]

    Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P, Grelu P 2017 Phys. Rev. Lett. 118 243901Google Scholar

    [25]

    Liu X M, Yao X K, Cui Y D 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [26]

    廖睿, 文锦辉, 刘智刚, 邓莉, 赖天树, 林位株 2002 中国激光 29 53

    Liao R, Wen J H, Liu Z G, Deng L, Lai T S, Lin W Z 2002 Chin. J. Lasers 29 53

    [27]

    王胭脂, 邵建达, 董洪成, 晋云霞, 王清月 2011 物理学报 60 018101Google Scholar

    Wang Y Z, Shao J D, Dong H C, Jin Y X, Wang Q Y 2011 Acta Phys. Sin. 60 018101Google Scholar

    [28]

    范海涛, 王胭脂, 王兆华, 叶蓬, 胡国行, 秦爽, 何会军, 易葵, 邵建达, 魏志义 2015 物理学报 64 144204Google Scholar

    Fan H T, Wang Y Z, Wang Z H, Ye P, Hu G H, Qin S, He H J, Yi K, Shao J D, Wei Z Y 2015 Acta Phys. Sin. 64 144204Google Scholar

    [29]

    Herink G, Kurtz F, Jalali B, Solli D R, Ropers C 2017 Science 356 50Google Scholar

    [30]

    Lederer M J, Luther-Davies B, Tan H H, Jagadish C, Soto-Crespo J M 1999 J. Opt. Soc. Am. B 16 895Google Scholar

    [31]

    Han X, Wu J, Zeng H 2008 Opt. Express 16 3686Google Scholar

    [32]

    Kurtz F, Ropers C, Herink G 2020 Nat. Photonics 14 9Google Scholar

    [33]

    Zavyalov A, Iliew R, Egorov O, Lederer F 2009 Phys. Rev. A 79 053841Google Scholar

  • [1] Fang Zhen, Yu You, Zhao Qiu-Ye, Zhang Yu-Dong, Wang Zhi-Qiang, Zhang Zu-Xing. Spectral pulsation dynamics of soliton molecules in ultrafast fiber lasers based on pump intensity modulation. Acta Physica Sinica, 2024, 73(1): 014202. doi: 10.7498/aps.73.20231030
    [2] Dai Chuan-Sheng, Dong Zhi-Peng, Lin Jia-Qiang, Yao Pei-Jun, Xu Li-Xin, Gu Chun. Passively Q-switched and mode-locked 1.9 μm Tm-doped fiber laser based on pure water as saturable absorber. Acta Physica Sinica, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [3] Yang Ya-Tao, Zou Yuan, Zeng Qiong, Song Yu-Feng, Wang Ke, Wang Zhen-Hong. Mode-locked fiber laser with coexistence of m ultiple solitons and noise-like pulses. Acta Physica Sinica, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [4] Dou Zhi-Yuan, Zhang Bin, Liu Shuai-Lin, Hou Jing. High-power 1.6 μm noise-like square pulse generation in an all-fiber mode-locked laser. Acta Physica Sinica, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [5] Yu Qiang, Guo Kun, Chen Jie, Wang Tao, Wang Jin, Shi Xin-Yao, Wu Jian, Zhang Kai, Zhou Pu. Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber. Acta Physica Sinica, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [6] Dou Zhi-Yuan, Tian Jin-Rong, Li Ke-Xuan, Yu Zhen-Hua, Hu Meng-Ting, Huo Ming-Chao, Song Yan-Rong. High-repetition-rate passively mode-locked erbium-doped all fiber laser. Acta Physica Sinica, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [7] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [8] Xu Zhong-Wei, Zhang Zu-Xing. All-normal-dispersion multi-wavelength mode-locked dissipative soliton Yb-doped fiber laser. Acta Physica Sinica, 2013, 62(10): 104210. doi: 10.7498/aps.62.104210
    [9] Chai Lu, Fan Zheng-Xiu, Wang Qing-Yue, Wang Yan-Zhi, Dong Hong-Cheng, Song You-Jian, Hu Ming-Lie, Shao Jian-Da, Jin Yun-Xia, He Hong-Bo, Yi Kui. Generation of 9.5 fs pulse by use of chirped mirrorsin Ti:sapphire laser cavity. Acta Physica Sinica, 2011, 60(1): 018101. doi: 10.7498/aps.60.018101
    [10] Zhao Yang-Ying, Han Hai-Nian, Teng Hao, Wei Zhi-Yi. Generation of femtoseond Ti:sapphire laser at 10MHz repetition rate by extending laser cavity with a telescope. Acta Physica Sinica, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [11] Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue. Improving the stability of the Ti: sapphire oscillator. Acta Physica Sinica, 2008, 57(5): 2971-2975. doi: 10.7498/aps.57.2971
    [12] Song You-Jian, Hu Ming-Lie, Liu Qing-Wen, Li Jin-Yan, Chen Wei, Chai Lu, Wang Qing-Yue. A mode-locked Yb3+-doped double-clad large-mode-area fiber laser. Acta Physica Sinica, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [13] Lin Hong-Huan, Lu Zhen-Hua, Wang Jian-Jun, Zhang Ying, Wang Feng-Rui, Xu Dang-Peng, Zhang Rui, Li Ming-Zhong, Deng Qing-Hua, Luo Yi-Ming, Tang Jun, Ding Lei. Gain-guided solitons in positive dispersion lasers. Acta Physica Sinica, 2008, 57(9): 5646-5650. doi: 10.7498/aps.57.5646
    [14] Feng Wei-Wei, Lin Li-Huang, Wang Wen-Yao, Li Ru-Xin, Wang Li-Chun. Generation of chirped pulses at high repetition rate with a Ti:sapphire regenerative amplifier. Acta Physica Sinica, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [15] Zhang Xiao-Hua, Zhang Guang-Yin, Jiao Zhi-Yong, Gu Xue-Wen, Yan Cai-Fan, Wu Ding-Er, Chai Lu, Cao Shi-Ying. Investigation of Ti:sapphire femtosecond laser mode-locking mechanism. Acta Physica Sinica, 2005, 54(3): 1213-1217. doi: 10.7498/aps.54.1213
    [16] Ling Wei-Jun, Wang Zhao-Hua, Wang Peng, Jia Yu-Lei, Tian Jin-Rong, Wei Zhi-Yi. The main multi-pass amplifier with double-side pumped Ti:sapphire. Acta Physica Sinica, 2005, 54(3): 1208-1212. doi: 10.7498/aps.54.1208
    [17] Wang Yi-Shan, Liu Hong-Jun, Cheng Zhao, Zhao Wei, Wang Yong-Gang, Ma Xiao-Yu, Zhang Zhi-Gang. Self-starting mode-locked femtosecond Ti:sapphire laser using saturable Bragg reflector(SBR). Acta Physica Sinica, 2005, 54(11): 5184-5188. doi: 10.7498/aps.54.5184
    [18] Wang Zhuan, Wang Qing-Yue, Han Ying-Kui, Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu. Octave-spanning spectrum generation in Ti: sapphire oscillator. Acta Physica Sinica, 2004, 53(10): 3375-3378. doi: 10.7498/aps.53.3375
    [19] CHAI LU, WANG QING-YUE, ZHAO JIANG-SHAN, XING QI-RONG, ZHANG ZHI-GANG. EXPERIMENTAL STUDY ON THE MECHANISM OF A SELF-STARTING KERR-LENS-MODE-LOCKING USING A SEMICONDUCTOR SATURABLE ABSORBER MIRROR. Acta Physica Sinica, 2001, 50(7): 1298-1301. doi: 10.7498/aps.50.1298
    [20] Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang, Zhao Jiang-Shan, Wang Yong, Zhang Wei-Li, Xing Qi-Rong. . Acta Physica Sinica, 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
Metrics
  • Abstract views:  6820
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2019
  • Accepted Date:  21 January 2020
  • Published Online:  20 April 2020

/

返回文章
返回