Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of mesoscale eddies on the vertical spatial characteristics of wind-generated noise in deep ocean

Jiang Guang-Yu Sun Chao Li Qin-Ran

Citation:

Effect of mesoscale eddies on the vertical spatial characteristics of wind-generated noise in deep ocean

Jiang Guang-Yu, Sun Chao, Li Qin-Ran
PDF
HTML
Get Citation
  • Mesoscale eddy is a marine phenomenon occurring frequently in deep ocean, and it will disturb the sound speed in the upper water layer. As a result, the mesoscale eddies will influence the propagation of wing-generated noise and cause the noise field to vary. In this paper, we investigate the effects of mesoscale eddies on the vertical spatial characteristics (including the noise vertical directionality and the noise vertical correlation) of wind-generated noise at different depths of its horizontal center of the eddy. In the study, the Gaussian eddy model is used to describe the sound speed fluctuation, and the ray and parabolic equation theories are used to describe the noise propagating in the near field and far field, respectively. Simulations indicate as follows. 1) At the depth of the eddy center, a clod-core eddy causes both the width of the horizontal notch and the noise vertical correlation to decrease, while the effect of a warm-core eddy is contrary to that of the cold-core eddy. 2) At the depth far from the eddy center, the effect of eddies is reduced, a cold-core and a warm-core eddy only lead the peak at the down edge of the horizontal notch in the noise directionality to rise and fall, respectively, and do not influence the noise vertical correlation. 3) The effect of an eddy becomes severe as its absolute strength becomes higher. The ray reversion method based on the principle of reciprocity is used to explain the physical reason behind the above phenomena. By the method the rays are launched from the noise receiving point and the polar angle and the strength of the noise arriving reversely along the ray paths are analyzed. It is shown that the change of the polar angle and the strength of the noise arriving reversely along the surface reflected ray paths in the presence of eddies are the main cause for changing the noise vertical spatial characteristics. Furthermore, simulations show that the analyses and conclusions in the study are still approximately valid when the receiving point deviates from the eddy center but the horizontal distance between them is short.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    [1]

    Carey W M, Evans R B 2011 Ocean Ambient Noise (New York: Springer) pp62−68

    [2]

    Wenz G M 1962 J. Acoust. Soc. Am. 34 1936Google Scholar

    [3]

    Yang T C, Yoo K 1997 J. Acoust. Soc. Am. 101 2541Google Scholar

    [4]

    蒋光禹, 孙超, 刘雄厚, 谢磊 2019 物理学报 68 024302Google Scholar

    Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302Google Scholar

    [5]

    Yoo K, Yang T C 1998 J. Acoust. Soc. Am. 104 3326Google Scholar

    [6]

    Harrison C H 2018 J. Acoust. Soc. Am. 143 1689Google Scholar

    [7]

    Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938Google Scholar

    [8]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377Google Scholar

    [9]

    Roux P, Kuperman W A, Group N 2004 J. Acoust. Soc. Am. 116 1995Google Scholar

    [10]

    Sabra K G, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 117 164Google Scholar

    [11]

    Buckingham M J 2011 J. Acoust. Soc. Am. 129 3562Google Scholar

    [12]

    Etter P C 2018 Underwater Acoustic Modeling and Simulation (3rd Ed.) (New York: CRC Press) pp214−231, 188−190

    [13]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732Google Scholar

    [14]

    Kuperman W A, Ingentio F 1980 J. Acoust. Soc. Am. 67 1988Google Scholar

    [15]

    Liggett W S, Jacobson M J 1965 J. Acoust. Soc. Am. 38 303Google Scholar

    [16]

    Harrison C H 1997 Appl. Acoust. 51 289Google Scholar

    [17]

    Carey W M, Evans R B, Davis J A, Botseas G 1990 IEEE J. Oceanic Eng. 15 324Google Scholar

    [18]

    Perkins J S, Kuperman W A, Ingentio F, Fialkowski L T 1993 J. Acoust. Soc. Am. 93 739Google Scholar

    [19]

    Hamson R M 1985 J. Acoust. Soc. Am. 78 1702Google Scholar

    [20]

    Deane G B, Buckingham M J, Tindle C T 1997 J. Acoust. Soc. Am. 102 3413Google Scholar

    [21]

    Harison C H 1997 J. Acoust. Soc. Am. 102 2655Google Scholar

    [22]

    Buckingham M J 2013 J. Acoust. Soc. Am. 134 950Google Scholar

    [23]

    刘伯胜, 雷家煜 2010 水声学原理第二版 (哈尔滨: 哈尔滨工程大学出版社) 第23−30页

    Liu B S, Lei J Y 2010 Principle of Underwater Acoustics 2nd (Harbin: Harbin Engineering University Press) pp23−30 (in Chinese)

    [24]

    Urick R J 1975 J. Acoust. Soc. Am. 5 8

    [25]

    Rouseff D, Tang D J 2006 J. Acoust. Soc. Am. 120 1284Google Scholar

    [26]

    江鹏飞, 林建恒, 马力, 蒋国健 2013 声学学报 38 724

    Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustica 38 724

    [27]

    汤博 2019 博士学位论文 (北京: 中国科学院大学)

    Tang B 2019 Ph. D. Dissertation (Beijing: University of Chinese Academy Sciences) (in Chinese)

    [28]

    Weinberg N L, Clark J G 1980 J. Acoust. Soc. Am. 68 703Google Scholar

    [29]

    Baer R N 1980 J. Acoust. Soc. Am. 67 1180Google Scholar

    [30]

    Lawrence M W 1983 J. Acoust. Soc. Am. 73 474Google Scholar

    [31]

    Henrick R F, Burkom H S 1983 J. Acoust. Soc. Am. 73 173Google Scholar

    [32]

    Jian Y J, Zhang J, Liu S Q, Wang Y F 2009 Appl. Acoust. 70 432Google Scholar

    [33]

    Heaney K D, Campbell R L 2016 J. Acoust. Soc. Am. 139 918Google Scholar

    [34]

    李佳迅, 张韧, 陈奕德, 金宝刚 2011 海洋通报 30 37Google Scholar

    Li J X, Zhang R, Chen Y D, Jin B G 2011 Marin. Sci. Bull. 30 37Google Scholar

    [35]

    Xiao Y, Li Z L, Li J, Liu J Q, Sabra K G 2019 Chin. Phys. B 28 054301Google Scholar

    [36]

    Chen C, Jin T, Zhou Z Q 2019 Appl. Acoust. 150 190Google Scholar

    [37]

    Chen C, Gao Y, Yan F G, Zhou Z Q 2019 Acoust. Aust. 47 185Google Scholar

    [38]

    康颖 2014 硕士学位论文 (青岛: 中国海洋大学)

    Kang Y 2004 M.S. Thesis (Qingdao: Ocean University of China) (in Chinese)

    [39]

    Jesen F B, Kuperman W A, Porter M B, Schmidt H Computational Ocean Acoustics 2nd (Berlin: Springer Science Business Media) pp155−230, 457−527

    [40]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [41]

    Poter M B https://oalib-acoustics.org/Rays/HLS-2010-1.pdf [2020-4-17]

    [42]

    Collins M D https://oalib-acoustics.org/PE/RAM/ram.pdf [2020-4-17]

    [43]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [44]

    Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar

    [45]

    Cox H 1973 J. Acoust. Soc. Am. 54 1289Google Scholar

    [46]

    Poter M B https://oalib-acoustics.org/AcousticsToolbox/Kraken.pdf [2020-4-17]

    [47]

    周建波 2018 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Zhou J B 2018 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [48]

    Brekhovskikh L M, Lysanov Y P, Beyer R T 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer) pp50−52

  • 图 1  高斯涡模型示意图

    Figure 1.  Gaussian eddy model

    图 2  噪声场模型几何示意图

    Figure 2.  Geometry of the noise model

    图 3  仿真环境

    Figure 3.  Simulation environment

    图 4  涡旋强度$ D_{\rm c} $不同值时的声速分布 (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-20 $; (c) $ D_{\rm c}=-40 $; (d) $ D_{\rm c}=20 $; (e) $ D_{\rm c}=40 $

    Figure 4.  Sound speed distribution with different $ D_{\rm c} $: (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-20 $; (c) $ D_{\rm c}=-40 $; (d) $ D_{\rm c}=20 $; (e) $ D_{\rm c}=40 $

    图 5  涡旋强度$ D_{\rm c} $取不同值时, 不同深度上的噪声垂直方向性 (图中黑色虚线指示了水平凹槽下边缘峰值) (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-20 $; (c) $ D_{\rm c}=-40 $; (d) $ D_{\rm c}=20 $; (e) $ D_{\rm c}=40 $

    Figure 5.  Noise vertical directionalities at different depths with different $ D_{\rm c} $ (black dashed line in each subfigure indicates the location of the peak at the downward edge of the horizontal notch): (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-20 $; (c) $ D_{\rm c}=-40 $; (d) $ D_{\rm c}=20 $; (e) $ D_{\rm c}=40 $

    图 6  800和2000 m深度上, 涡旋强度$ D_{\rm c} $取不同值时的噪声垂直方向性 (a) 800 m; (b) 2000 m

    Figure 6.  Noise vertical directionalities with different $ D_{\rm c} $ at 800 and 2000 m depths: (a) 800 m; (b) 2000 m

    图 7  800 m深度上, 涡旋强度$ D_{\rm c} $取不同值时的噪声垂直相关函数 (a) $ {\rm Re}\left[ \varGamma(d) \right] $; (b) $ {\rm{Im}}\left[ \varGamma(d) \right] $

    Figure 7.  Noise vertical correlation functions with different $ D_{\rm c} $ at 800 m depth: (a) $ {\rm Re}\left[ \varGamma(d) \right] $; (b) $ {\rm{Im}}\left[ \varGamma(d) \right] $

    图 8  2000 m深度上, 涡旋强度$ D_{\rm c} $取不同值时的噪声垂直相关函数 (a) $ {\rm Re}\left[ \varGamma(d) \right] $; (b) $ {\rm{Im}}\left[ \varGamma(d) \right] $

    Figure 8.  Noise vertical correlation functions with different $ D_{\rm c} $ at 2000 m depth: (a) $ {\rm Re}\left[ \varGamma(d) \right] $; (b) $ {\rm{Im}}\left[ \varGamma(d) \right] $

    图 9  $ D_{\rm c} $取0, $ -40 $和40时, 以(0, 800 m)为发射点, 出射俯仰角为$95.5 ^\circ — 110.5 ^\circ$的声线轨迹图(图中绿色虚线、红色实线和灰色点线分别表示NR, SR和SRBR声线) (a) $ D_{\rm c}= $0; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    Figure 9.  Traces of the rays launching from the (0, 800 m) point with the launching polar angles varying within $95.5 ^\circ - 110.5 ^\circ$ under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40 (green dashed lines, red solid lines and gray dotted lines in each subfigure indicate the NR, SR, and SRBR rays, respectively): (a) $ D_{\rm c} \!=\! $0; (b) $ D_{\rm c}\!=\! -40 $; (c) $ D_{\rm c}\!=\! 40$

    图 10  $ D_{\rm c} $取0, $ -40 $和40时, 40—50 km不同$ {\rm d}r $范围内的噪声源产生的噪声场在800 m深度上的垂直方向性$ B_r(\theta) $ (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    Figure 10.  Noise vertical noise directionalities $ B_r(\theta) $ generated by noise sources within $ {\rm d}r $ at 800 m depth with r varying from 40 to 50 km under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40: (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    图 11  $ D_{\rm c} $取0, $ -40 $和40时, 以(0, 2000 m)为发射点, 出射俯仰角为$95.5 ^\circ — 110.5 ^\circ$的声线轨迹图(图中绿色虚线、红色实线和灰色点线分别表示NR, SR和SRBR声线) (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    Figure 11.  Traces of the rays launching from the (0, 2000 m) point with the launching polar angles varying within $95.5 ^\circ - 110.5 ^\circ$ under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40 (green dashed lines, red solid lines and gray dotted lines in each subfigure indicate the NR, SR, and SRBR rays, respectively): (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) Dc = 40

    图 12  $ D_{\rm c} $取0, $ -40 $和40时, 40—50 km不同$ {\rm d}r $范围内的噪声源产生的噪声场在2000 m深度上的垂直方向性$ B_r(\theta) $ (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    Figure 12.  Noise vertical noise directionalities $ B_r(\theta) $ generated by noise sources within $ {\rm d}r $ at 2000 m depth with r varying from 40 to 50 km under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40: (a) $ D_{\rm c}=0 $; (b) $ D_{\rm c}=-40 $; (c) $ D_{\rm c}=40 $

    图 13  几何俯视示意图

    Figure 13.  Downward-view geometry

    图 14  800 m深度水平截面内的声速分布

    Figure 14.  Sound distribution in the 800 m depth cross section

    图 15  使用Bellhop3D, 分别选择${{N}} \times {\rm{2 D}}$$ \rm 3 D $模式计算得到的$ O_{\rm R} $处800 m深度上的声源到噪声源深度(0.5 m)水平截面的传播损失 (a) ${{N}} \times {\rm{2 D}}$; (b)${\rm{3 D}}$

    Figure 15.  Transmission loss from $ O_{\rm R} $ 800 m depth to the noise sources depth (0.5 m) cross section computed by the Bellhop3D program in ${{N}} \times {\rm{2D}}$ and 3D modes: (a) N × 2D; (b) 3D

    图 16  800 m深度上, 偏心位置处仅考虑扇面1或扇面2内噪声源的贡献得到的噪声垂直方向性以及涡心位置处的噪声垂直方向性

    Figure 16.  Noise vertical directionalities at the off-center position 800 m depth generated by the noise sources within sector 1 and sector 2 in comparison with the noise vertical directionality at the eddy center 800 m depth

    表 1  $ D_{\rm c} $取0, $ -40 $和40时, 以(0, 800 m)为发射点, 出射俯仰角大于$90 ^\circ$的声线中, SR声线的最小出射俯仰角$ \theta_{{\rm{SR}}, {\rm{min}}} $、最大出射俯仰角$\theta_{{\rm{SR}}, {\rm{max}}}$、中心出射俯仰角$\theta_{{\rm{SR}}, {\rm{c}}}$和出射俯仰角宽度$ \Delta \theta_{\rm{SR}} $

    Table 1.  Minimal lunching polar angle $\theta_{{\rm{SR}}, {\rm{min}}}$, maximal launching polar angle $\theta_{{\rm{SR}}, {\rm{max}}}$, central launching polar angle $\theta_{{\rm{SR}}, {\rm{c}}}$, and launching polar angle width $ \Delta \theta_{\rm{SR}} $ of the SR rays launching from the (0, 800 m) point with the launching polar angle being greater than $90 ^\circ$ under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40

    $ D_{\rm c} $ $\theta_{{\rm{SR} }, {\rm{min} }}$ $\theta_{{\rm{SR} }, {\rm{max} }}$ $\theta_{{\rm{SR} }, {\rm{c} }}$ $ \Delta \theta_{\rm{SR}} $
    0 104.3° 105.1° 104.70° 0.8°
    –40 109.3° 110.0° 109.65° 0.7°
    40 96.3° 97.7° 97.00° 1.4°
    DownLoad: CSV

    表 2  $ D_{\rm c} $取0, $ -40 $和40时, 以(0, 2000 m)为发射点, 出射俯仰角大于$90 ^\circ$的声线中, SR声线的最小出射俯仰角$\theta_{{\rm{SR}}, {\rm{min}}}$、最大出射俯仰角$\theta_{{\rm{SR}}, {\rm{max}}}$、中心出射俯仰角$\theta_{{\rm{SR}}, {\rm{c}}}$和出射俯仰角宽度$ \Delta \theta_{\rm{SR}} $

    Table 2.  Minimal launching polar angle $\theta_{{\rm{SR}}, {\rm{min}}}$, maximal launching polar angle $\theta_{{\rm{SR}}, {\rm{max}}}$, central launching polar angle $\theta_{{\rm{SR}}, {\rm{c}}}$, and launching polar angle width $ \Delta \theta_{\rm{SR}} $ of the SR rays launching from the (0, 2000 m) point with the launching polar angle being greater than $90 ^\circ$ under the conditions where $ D_{\rm c} $ equals to 0, $ -40 $, and 40

    $ D_{\rm c} $ $\theta_{{\rm{SR} }, {\rm{min} }}$ $\theta_{{\rm{SR} }, {\rm{max} }}$ $\theta_{{\rm{SR} }, {\rm{c} }}$ $ \Delta \theta_{\rm{SR}} $
    0 102.3° 103.4° 102.85° 1.1°
    –40 102.0° 103.4° 102.70° 1.4°
    40 102.7° 103.4° 103.05° 0.7°
    DownLoad: CSV
  • [1]

    Carey W M, Evans R B 2011 Ocean Ambient Noise (New York: Springer) pp62−68

    [2]

    Wenz G M 1962 J. Acoust. Soc. Am. 34 1936Google Scholar

    [3]

    Yang T C, Yoo K 1997 J. Acoust. Soc. Am. 101 2541Google Scholar

    [4]

    蒋光禹, 孙超, 刘雄厚, 谢磊 2019 物理学报 68 024302Google Scholar

    Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302Google Scholar

    [5]

    Yoo K, Yang T C 1998 J. Acoust. Soc. Am. 104 3326Google Scholar

    [6]

    Harrison C H 2018 J. Acoust. Soc. Am. 143 1689Google Scholar

    [7]

    Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938Google Scholar

    [8]

    Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377Google Scholar

    [9]

    Roux P, Kuperman W A, Group N 2004 J. Acoust. Soc. Am. 116 1995Google Scholar

    [10]

    Sabra K G, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 117 164Google Scholar

    [11]

    Buckingham M J 2011 J. Acoust. Soc. Am. 129 3562Google Scholar

    [12]

    Etter P C 2018 Underwater Acoustic Modeling and Simulation (3rd Ed.) (New York: CRC Press) pp214−231, 188−190

    [13]

    Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732Google Scholar

    [14]

    Kuperman W A, Ingentio F 1980 J. Acoust. Soc. Am. 67 1988Google Scholar

    [15]

    Liggett W S, Jacobson M J 1965 J. Acoust. Soc. Am. 38 303Google Scholar

    [16]

    Harrison C H 1997 Appl. Acoust. 51 289Google Scholar

    [17]

    Carey W M, Evans R B, Davis J A, Botseas G 1990 IEEE J. Oceanic Eng. 15 324Google Scholar

    [18]

    Perkins J S, Kuperman W A, Ingentio F, Fialkowski L T 1993 J. Acoust. Soc. Am. 93 739Google Scholar

    [19]

    Hamson R M 1985 J. Acoust. Soc. Am. 78 1702Google Scholar

    [20]

    Deane G B, Buckingham M J, Tindle C T 1997 J. Acoust. Soc. Am. 102 3413Google Scholar

    [21]

    Harison C H 1997 J. Acoust. Soc. Am. 102 2655Google Scholar

    [22]

    Buckingham M J 2013 J. Acoust. Soc. Am. 134 950Google Scholar

    [23]

    刘伯胜, 雷家煜 2010 水声学原理第二版 (哈尔滨: 哈尔滨工程大学出版社) 第23−30页

    Liu B S, Lei J Y 2010 Principle of Underwater Acoustics 2nd (Harbin: Harbin Engineering University Press) pp23−30 (in Chinese)

    [24]

    Urick R J 1975 J. Acoust. Soc. Am. 5 8

    [25]

    Rouseff D, Tang D J 2006 J. Acoust. Soc. Am. 120 1284Google Scholar

    [26]

    江鹏飞, 林建恒, 马力, 蒋国健 2013 声学学报 38 724

    Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustica 38 724

    [27]

    汤博 2019 博士学位论文 (北京: 中国科学院大学)

    Tang B 2019 Ph. D. Dissertation (Beijing: University of Chinese Academy Sciences) (in Chinese)

    [28]

    Weinberg N L, Clark J G 1980 J. Acoust. Soc. Am. 68 703Google Scholar

    [29]

    Baer R N 1980 J. Acoust. Soc. Am. 67 1180Google Scholar

    [30]

    Lawrence M W 1983 J. Acoust. Soc. Am. 73 474Google Scholar

    [31]

    Henrick R F, Burkom H S 1983 J. Acoust. Soc. Am. 73 173Google Scholar

    [32]

    Jian Y J, Zhang J, Liu S Q, Wang Y F 2009 Appl. Acoust. 70 432Google Scholar

    [33]

    Heaney K D, Campbell R L 2016 J. Acoust. Soc. Am. 139 918Google Scholar

    [34]

    李佳迅, 张韧, 陈奕德, 金宝刚 2011 海洋通报 30 37Google Scholar

    Li J X, Zhang R, Chen Y D, Jin B G 2011 Marin. Sci. Bull. 30 37Google Scholar

    [35]

    Xiao Y, Li Z L, Li J, Liu J Q, Sabra K G 2019 Chin. Phys. B 28 054301Google Scholar

    [36]

    Chen C, Jin T, Zhou Z Q 2019 Appl. Acoust. 150 190Google Scholar

    [37]

    Chen C, Gao Y, Yan F G, Zhou Z Q 2019 Acoust. Aust. 47 185Google Scholar

    [38]

    康颖 2014 硕士学位论文 (青岛: 中国海洋大学)

    Kang Y 2004 M.S. Thesis (Qingdao: Ocean University of China) (in Chinese)

    [39]

    Jesen F B, Kuperman W A, Porter M B, Schmidt H Computational Ocean Acoustics 2nd (Berlin: Springer Science Business Media) pp155−230, 457−527

    [40]

    Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar

    [41]

    Poter M B https://oalib-acoustics.org/Rays/HLS-2010-1.pdf [2020-4-17]

    [42]

    Collins M D https://oalib-acoustics.org/PE/RAM/ram.pdf [2020-4-17]

    [43]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [44]

    Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar

    [45]

    Cox H 1973 J. Acoust. Soc. Am. 54 1289Google Scholar

    [46]

    Poter M B https://oalib-acoustics.org/AcousticsToolbox/Kraken.pdf [2020-4-17]

    [47]

    周建波 2018 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Zhou J B 2018 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [48]

    Brekhovskikh L M, Lysanov Y P, Beyer R T 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer) pp50−52

  • [1] Ma Shu-Qing, Guo Xiao-Jin, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia. Riemannian geometric modeling of underwater acoustic ray propagation ·application——Riemannian geometric model of convergence zone in deep ocean remote sound propagation. Acta Physica Sinica, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [2] Li Ming-Yang, Zhao Hang-Fang, Sun Chao. Variation of signal-to-noise ratio of vertical array with sound source depth under wind-generated noise background. Acta Physica Sinica, 2022, 71(4): 044302. doi: 10.7498/aps.71.20211654
    [3] Vertical Line Array-level Signal-to-noise Ratio Varying with Source Depths in the Presence of Surface Noise. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211654
    [4] Wang Li, Liu Jing-Si, Li Ji, Zhou Xiao-Lin, Chen Xiang-Rong, Liu Chao-Fei, Liu Wu-Ming. The research progress of topological properties in spinor Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [5] Yong Kang-Le, Yan Jia-Wei, Tang Shan-Fa, Zhang Rong-Zhu. Influence of coma and spherical aberration on transmission characteristics of vortex beams in slant atmospheric turbulence. Acta Physica Sinica, 2020, 69(1): 014201. doi: 10.7498/aps.69.20191254
    [6] Jiang Guang-Yu, Sun Chao, Xie Lei, Liu Xiong-Hou. Influence of surface duct on the vertical spatial characteristics of wind-generated noise in deep ocean. Acta Physica Sinica, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [7] Li Yao-Yi, Jia Jin-Feng. Search for Majorana zero mode in the magnetic vortex of artificial topological superconductor. Acta Physica Sinica, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [8] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [9] Shi Liang-Ma, Zhou Ming-Jian, Zhu Ren-Yi. Evolution of vortex configuration for superconducting ring in the presence of an externally applied field. Acta Physica Sinica, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [10] Zhang Qing-Hong, Liao Cheng, Sheng Nan, Chen Ling-Lu. Improved study on parabolic equation model for radio wave propagation in forest. Acta Physica Sinica, 2013, 62(20): 204101. doi: 10.7498/aps.62.204101
    [11] Liu Chao-Fei, Wan Wen-Juan, Zhang Gan-Yuan. Vortex pattern in spin-orbit coupled spin-1 Bose-Einstein condensate of 23Na. Acta Physica Sinica, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [12] Zhou Yu, Zhou Qing-Chun, Ma Xiao-Dong. Vortex of an anomalous mode in Fermi gas near unitarity limit. Acta Physica Sinica, 2013, 62(14): 140301. doi: 10.7498/aps.62.140301
    [13] Jiang Shuang-Feng, Kong Fan-Min, Li Kang, Gao Hui. Study of far-field directivity of optical dipole antenna. Acta Physica Sinica, 2011, 60(4): 045203. doi: 10.7498/aps.60.045203
    [14] Li Guo-Long, Huang Zhuo-Yin, Li Kan, Zhen Hong-Yu, Shen Wei-Dong, Liu Xu. Analysis of the effect of active layer thickness on polymer solar cell performance based on optical and opto-electronic model. Acta Physica Sinica, 2011, 60(7): 077207. doi: 10.7498/aps.60.077207
    [15] Zheng Wei-Wei, Wang Li-Qin, Xu Jing-Ping, Wang Li-Gang. Studies on propagation of laser beam array with initial phase distributions in a turbulent atmosphere. Acta Physica Sinica, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [16] Huang Si-Xun, Cai Qi-Fa, Xiang Jie, Zhang Ming. On decomposition of typhoon flow field. Acta Physica Sinica, 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [17] Wang Li, Wang Qing-Feng, Wang Xi-Qing, Lü Bai-Da. Transversal optical vortex in the interference field of two off-axis Gaussian beams. Acta Physica Sinica, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [18] Li Yong-Qing, Li Xi-Guo, Liu Zi-Yu, Luo Pei-Yan, Zhang Peng-Ming. New vortex solutions of Jackiw-Pi model. Acta Physica Sinica, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [19] WANG DE-HE. ATOMIC CORRELATIONS IN AMORPHOUS Si AND Ge AND STRUCTURAL MODEL. Acta Physica Sinica, 1992, 41(5): 792-797. doi: 10.7498/aps.41.792
    [20] LI YONG-QING, WANG YU-ZHU. REDUCTION OF QUANTUM NOISE BY PHOTON CORRELATION. Acta Physica Sinica, 1989, 38(3): 476-480. doi: 10.7498/aps.38.476
Metrics
  • Abstract views:  4914
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  09 January 2020
  • Accepted Date:  15 April 2020
  • Available Online:  09 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回