Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrodynamic characteristics of λ-DNA molecule translocating through the microfluidic channel port studied with single molecular fluorescence imaging technology

Wang Qiong Wang Kai-Ge Meng Kang Kang Sun Dan Han Tong Yu Gao Ai-Hua

Citation:

Electrodynamic characteristics of λ-DNA molecule translocating through the microfluidic channel port studied with single molecular fluorescence imaging technology

Wang Qiong, Wang Kai-Ge, Meng Kang Kang, Sun Dan, Han Tong Yu, Gao Ai-Hua
PDF
HTML
Get Citation
  • Manipulating a single DNA molecule and effectively introducing it into and exporting micro-nano-fluidic channels are prerequisites for the functional DNA biochips. And it is the key to the precise separation and screening of different DNA molecules by the micro-/nanochannel system that accurately understanding the movement characteristics and dynamic mechanism of DNA molecules moving near the channel port. In this paper, the electrodynamic characteristics of λ-DNA molecule entering into/leaving off a 50 μm channel port driven by the electric field force are systematically investigated and analyzed by the single molecule fluorescence microscopy. The experimental results indicated that there were the maximum (Emax) and minimum (Emin) thresholds of the applied electric field intensity, and only when the field intensity E meets EminEEmax, the single λ-DNA molecule could successfully enter into the trans port and exit out of the cis port; when the electric field intensity was less than the minimum threshold, EEmin, λ-DNA molecules could not enter the trans port; when the electric field intensity was greater than the maximum threshold, EmaxE, λ-DNA molecules could move into the microchannel through the trans port, but not exit out of the cis port. When λ-DNA molecule migrated toward the cis port along the channel, the movement state was changed, some new phenomena were observed, e.g. the translocation direction was reversed, reciprocated, or even rotated; moreover, the DNA molecules were easy to adhere to the channel wall. In addition, when the electric field intensity enhanced, the distance between the position where DNA molecular direction reversing and the cis port was increased. Based on the microfluidic electrodynamics, the physical mechanism of the velocities and translocation states of single λ-DNA molecule passing microchannel port was preliminarily analyzed. The results of this study have certain practical guiding significance for the development of gene chip laboratory and DNA molecular sensors based on the micro/nanochannel fluidic system.
      Corresponding author: Wang Kai-Ge, wangkg@nwu.edu.cn ; Gao Ai-Hua, gaoaihua@nwu.edu.cn
    • Funds: National Natural Science Foundation of China (Grant Nos. 61378083, 61405159), the International Cooperation Foundation of the National Science and Technology Ministry of of China (Grant No. 2011DFA12220), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project, China (Grant Nos. 2016ZDJC-15, S2018-ZC-TD-0061)
    [1]

    Streets A M, Huang Y 2014 Curr. Opin. Biotechnol. 25 69Google Scholar

    [2]

    Atalay Y T, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboner P, Nicolai B M, Lammertyn J 2011 Trends Food Sci. Technol. 22 386Google Scholar

    [3]

    Rivet C, Lee H, Hirsch A, Hamilton S, Lu H 2011 Chem. Eng. Sci. 66 1490Google Scholar

    [4]

    David E, Mandal S, Yang A H J, Bernardoc C 2008 Microfluid. Nanofluid. 4 33Google Scholar

    [5]

    Branton D, Deamer D W, Marziali A, Bayley H 2008 Nat. Biotechnol. 26 1146Google Scholar

    [6]

    Wang K G, Yue S L, Wang L, Jin A, Chang Z G, Wang P Y, Feng Y C, Wang Y C, Niu H B 2006 Microfluid. Nanofluid. 2 85Google Scholar

    [7]

    Rief M, Clausen-Schaumann H, Gaub H E 1999 Nat. Struct. Biol. 6 346Google Scholar

    [8]

    Aksimentiev A, Schulten K 2005 Biophys. J. 88 3745Google Scholar

    [9]

    Wells D B, Abramkina V, Aksimentiev A 2007 J. Chem. Phys. 127 5101

    [10]

    Rose D J, Jorgenson J R, Jorgenson J W 1988 J. Anal. Chem. 60 642Google Scholar

    [11]

    陈义, 竺安 1991 色谱 6 353

    Chen Y, Zhu A 1991 Chin. J. Chrom. 6 353

    [12]

    Linhares M C, Kissinger P T 1991 J. Anal. Chem. 63 2076Google Scholar

    [13]

    Lee C H, Hesish C C 2013 Biomicrofluidics 7 044106Google Scholar

    [14]

    Renner C B, Patrick S D 2015 Soft Matter 11 3105Google Scholar

    [15]

    Wang H Q, Wang K G, Ma H W 2016 J. Nanosci. Nanotechno. 16 6986Google Scholar

    [16]

    Yang F Y, Wang K G, Sun D, Zhao W, Wang H Q, He X, Wang G R, Bai J T 2016 Chin. Phys. B 25 529

    [17]

    Jones P V, Salmon G L, Ros A 2017 J. Anal. Chem. 89 1531Google Scholar

    [18]

    Marie R, Beech J P, Vörös J, Tegenfeldt J O 2006 Langmuir 22 10103Google Scholar

    [19]

    Mitchell M J, Qiao R, Aluru N R 2000 J. Microelectromech. Syst. 9 435Google Scholar

    [20]

    李战华 2012 微流控芯片中的流体流动 (北京: 科学出版社) 第191页

    Li Z H 2012 Fluid Flow in Microfluidic Chips (Beijing: Science Press) p191 (in Chinese)

    [21]

    Uehara S, Shintaku H, Kawano S 2011 J. Fluids Eng. 133 121203Google Scholar

    [22]

    Firnkes M, Pedone D, Knezevic J, Dolinger M 2010 Nano Lett. 10 2162Google Scholar

    [23]

    Schoch R B, Han J, Renaud P 2008 Rev. Mod. Phys. 80 839Google Scholar

    [24]

    Perkins T T, Smith D, Chu S 1994 Science 264 822Google Scholar

    [25]

    高峰, 石则满, 冯鑫 2017 传感器与微系统 11 53

    Gao F, Shi Z M, Feng X 2017 Tansducer. Microsystem. 11 53

    [26]

    陈凌珊, 周建华, 仕康 1993 工程热物理学报 3 336

    Chen L S, Zhou J H, Wang S K 1993 J. Eng. Therm. 3 336

    [27]

    朱红, 周亚 2010 自然科学学报 32 45

    Zhou H, Zhou Y T 2010 J. Nat. Sci. 32 45

    [28]

    Sparreboom W, Van Den Berg A, Eijkel J C T 2009 Nat. Nanotechnol. 4 713Google Scholar

    [29]

    Tang J, Du N, Doyle P S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 16153Google Scholar

    [30]

    Saffman P G 1965 J. Fluid Mech. 22 385Google Scholar

    [31]

    Magnus G 1853 Ann. Phys. 164 1Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of experimental set-up.

    图 2  DNA分子从trans端口进入微米通道并在内部迁移(E = 3.75 × 103 V·m–1) (a) 不同时间下的CCD照片; (b) DNA分子位置随时间的变化曲线

    Figure 2.  DNA molecules enter the microchannel from the trans port and migrate inside (E = 3.75 × 103 V·m–1): (a) CCD photographs; (b) DNA molecular position.

    图 3  DNA分子进出端口的速度随时间的变化(E = 3.75 × 104 V·m–1) (a) 进入trans端口; (b) 穿出cis端口; (c) 速度随外加电场强度的变化关系

    Figure 3.  The velocity of DNA molecules entering and leaving the port (E = 3.75 × 103 V·m–1): (a) Entering the trans port; (b) leaving the cis port; and (c) velocity versus electric intensity.

    图 4  DNA分子在微通道内的反转运动 (a) E = 8.125 × 103 V·m–1; (b) E = 9.375 × 103 V·m–1; (c) 不同电场强度下, 在cis端口不同区域内的DNA分子反转数占总数的百分比

    Figure 4.  Reversed motion of DNA molecules within micro channel under different electric intensity: (a) E = 8.125 × 103 V·m–1; (b) E = 9.375 × 103 V·m–1; (c) percentage of DNA molecules with reversal motion direction in different regions of the cis port under different electric intensity.

    图 5  DNA分子在trans端口附近沿轴向的运动 (a) 往复运动; (b) 旋转运动

    Figure 5.  The motion of DNA molecules near the trans port: (a) Reciprocating along the axis; (b) rotating.

    图 6  DNA分子在trans端口附近的往复运动(E = 9.375 × 103 V·m–1)

    Figure 6.  The track of DNA molecules reciprocating near the trans port (E = 9.375 × 103 V·m–1).

    图 7  不同电场强度下的trans端口附近通道内壁团聚有DNA分子 (a) E = 7.5 × 103 V·m–1; (b) E = 1 × 104 V·m–1

    Figure 7.  Aggregates of DNA molecules on the wall of microchannel near the trans port; (a) E = 7.5 × 103 V·m–1; (b) E = 1 × 104 V·m–1.

    图 8  缓冲液在微米通道内的流速分布以及DNA受力和速度示意图 (a)受力; (b)速度

    Figure 8.  Schematic diagram of buffer velocity distribution in microfluidic channel and the infromation of DNA: (a) Force; (b) velocity.

    图 9  DNA分子在端口同一截面不同位置的实测速度与理论速度

    Figure 9.  Measured and theoretical velocities of DNA molecules at different positions on the same cross section of near the microchannel port.

    图 10  DNA分子在微米通道内端口附近处的反转运动示意图 (a) DNA分子在cis端口处反转, 反转后的DNA分子容易吸附在微米通道内管壁上, 7.5 × 103 V·m–1E ≤ 1 × 104 V·m–1; (b) DNA分子在trans端口附近的反转运动, E > 1 × 104 V·m–1

    Figure 10.  Schematic diagram of DNA molecules moving near the port of microchannel: (a) reversing near the cis port, and the reversed DNA molecule is easy to be adsorbed onto the inner wall, 7.5 × 103 V·m–1E ≤ 1 × 104 V·m–1; (b) reversing near the trans port, E > 1 × 104 V·m–1.

  • [1]

    Streets A M, Huang Y 2014 Curr. Opin. Biotechnol. 25 69Google Scholar

    [2]

    Atalay Y T, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboner P, Nicolai B M, Lammertyn J 2011 Trends Food Sci. Technol. 22 386Google Scholar

    [3]

    Rivet C, Lee H, Hirsch A, Hamilton S, Lu H 2011 Chem. Eng. Sci. 66 1490Google Scholar

    [4]

    David E, Mandal S, Yang A H J, Bernardoc C 2008 Microfluid. Nanofluid. 4 33Google Scholar

    [5]

    Branton D, Deamer D W, Marziali A, Bayley H 2008 Nat. Biotechnol. 26 1146Google Scholar

    [6]

    Wang K G, Yue S L, Wang L, Jin A, Chang Z G, Wang P Y, Feng Y C, Wang Y C, Niu H B 2006 Microfluid. Nanofluid. 2 85Google Scholar

    [7]

    Rief M, Clausen-Schaumann H, Gaub H E 1999 Nat. Struct. Biol. 6 346Google Scholar

    [8]

    Aksimentiev A, Schulten K 2005 Biophys. J. 88 3745Google Scholar

    [9]

    Wells D B, Abramkina V, Aksimentiev A 2007 J. Chem. Phys. 127 5101

    [10]

    Rose D J, Jorgenson J R, Jorgenson J W 1988 J. Anal. Chem. 60 642Google Scholar

    [11]

    陈义, 竺安 1991 色谱 6 353

    Chen Y, Zhu A 1991 Chin. J. Chrom. 6 353

    [12]

    Linhares M C, Kissinger P T 1991 J. Anal. Chem. 63 2076Google Scholar

    [13]

    Lee C H, Hesish C C 2013 Biomicrofluidics 7 044106Google Scholar

    [14]

    Renner C B, Patrick S D 2015 Soft Matter 11 3105Google Scholar

    [15]

    Wang H Q, Wang K G, Ma H W 2016 J. Nanosci. Nanotechno. 16 6986Google Scholar

    [16]

    Yang F Y, Wang K G, Sun D, Zhao W, Wang H Q, He X, Wang G R, Bai J T 2016 Chin. Phys. B 25 529

    [17]

    Jones P V, Salmon G L, Ros A 2017 J. Anal. Chem. 89 1531Google Scholar

    [18]

    Marie R, Beech J P, Vörös J, Tegenfeldt J O 2006 Langmuir 22 10103Google Scholar

    [19]

    Mitchell M J, Qiao R, Aluru N R 2000 J. Microelectromech. Syst. 9 435Google Scholar

    [20]

    李战华 2012 微流控芯片中的流体流动 (北京: 科学出版社) 第191页

    Li Z H 2012 Fluid Flow in Microfluidic Chips (Beijing: Science Press) p191 (in Chinese)

    [21]

    Uehara S, Shintaku H, Kawano S 2011 J. Fluids Eng. 133 121203Google Scholar

    [22]

    Firnkes M, Pedone D, Knezevic J, Dolinger M 2010 Nano Lett. 10 2162Google Scholar

    [23]

    Schoch R B, Han J, Renaud P 2008 Rev. Mod. Phys. 80 839Google Scholar

    [24]

    Perkins T T, Smith D, Chu S 1994 Science 264 822Google Scholar

    [25]

    高峰, 石则满, 冯鑫 2017 传感器与微系统 11 53

    Gao F, Shi Z M, Feng X 2017 Tansducer. Microsystem. 11 53

    [26]

    陈凌珊, 周建华, 仕康 1993 工程热物理学报 3 336

    Chen L S, Zhou J H, Wang S K 1993 J. Eng. Therm. 3 336

    [27]

    朱红, 周亚 2010 自然科学学报 32 45

    Zhou H, Zhou Y T 2010 J. Nat. Sci. 32 45

    [28]

    Sparreboom W, Van Den Berg A, Eijkel J C T 2009 Nat. Nanotechnol. 4 713Google Scholar

    [29]

    Tang J, Du N, Doyle P S 2011 Proc. Natl. Acad. Sci. U. S. A. 108 16153Google Scholar

    [30]

    Saffman P G 1965 J. Fluid Mech. 22 385Google Scholar

    [31]

    Magnus G 1853 Ann. Phys. 164 1Google Scholar

  • [1] Fan Qin-Kai, Yang Chen-Guang, Hu Shu-Xin, Xu Chun-Hua, Li Ming, Lu Ying. Single-molecular surface-induced fluorescence attenuation based on thermal reduced graphene oxide. Acta Physica Sinica, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [2] Tian Xiao-Jun, Kong Fan-Fang, Jing Shi-Hao, Yu Yun-Jie, Zhang Yao, Zhang Yang, Dong Zhen-Chao. Probing vibronic coupling of a transiently charged state of a single molecule through subnanometer resolved electroluminescence imaging. Acta Physica Sinica, 2022, 71(6): 063301. doi: 10.7498/aps.71.20212003
    [3] Lu Yue, Ma Jian-Bing, Teng Cui-Juan, Lu Ying, Li Ming, Xu Chun-Hua. Binding process between E.coli SSB and ssDNA by single-molecule dynamics. Acta Physica Sinica, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [4] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [5] Wang Xi, Li Ming, Ye Fang-Fu, Zhou Xin. Modelling and simulation of DNA hydrogel with a coarse-grained model. Acta Physica Sinica, 2017, 66(15): 150201. doi: 10.7498/aps.66.150201
    [6] Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can. Single molecular study on interactions between avidin and DNA. Acta Physica Sinica, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [7] Xiao Shi-Yan, Liang Hao-Jun. DNA and DNA computation based on toehold-mediated strand-displacement reactions. Acta Physica Sinica, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [8] Xu Shao-Feng, Wang Jiu-Gen. Dissipative particle dynamics simulation of macromolecular solutions under Poiseuille flow in microchannels. Acta Physica Sinica, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [9] Wang Wei, Zhang Qi-Chang, Jin Gang. The analytical reduction of the Kirchhoff thin elastic rod model with asymmetric cross section. Acta Physica Sinica, 2012, 61(6): 064602. doi: 10.7498/aps.61.064602
    [10] Ma Song-Shan, Zhu Jia, Xu Hui, Guo Rui. Base pairs composition, on-site energies of electrode and DNA-metal coupling effects on current-voltage characteristic of DNA molecule. Acta Physica Sinica, 2010, 59(10): 7458-7462. doi: 10.7498/aps.59.7458
    [11] Zhang Xing-Hua, Xiao Bin, Hou Xi-Miao, Xu Chun-Hua, Wang Peng-Ye, Li Ming. Study of cisplatin-induced DNA compaction using single molecule magnetic tweezers. Acta Physica Sinica, 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [12] Meng Xian-Lan, Gao Xu-Tuan, Qu Zhen, Kang Da-Wei, Liu De-Sheng, Xie Shi-Jie. Effects of interfacial couplings on charge transport properties of DNA molecule. Acta Physica Sinica, 2008, 57(8): 5316-5322. doi: 10.7498/aps.57.5316
    [13] Xu Hui, Guo Ai-Min, Ma Song-Shan. The influence of base pair sequence on electronic structure of DNA molecules. Acta Physica Sinica, 2007, 56(2): 1208-1213. doi: 10.7498/aps.56.1208
    [14] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Deng Chao-Sheng, Guo Ai-Min. The localized properties of electronic states and conductivity of DNA sequence. Acta Physica Sinica, 2006, 55(10): 5562-5567. doi: 10.7498/aps.55.5562
    [15] Gao Xu-Tuan, Fu Xue, Song Jun, Liu De-Sheng, Xie Shi-Jie. Effect of lattice site position fluctuation on the electronic structure of DNA. Acta Physica Sinica, 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [16] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Guo Ai-Min. Characteristics of the electronic structure of DNA sequence. Acta Physica Sinica, 2006, 55(6): 3170-3174. doi: 10.7498/aps.55.3170
    [17] Liu Yu-Ying, Dou Shuo-Xing, Wang Peng-Ye, Xie Ping, Wang Wei-Chi. Study of interactions between DNA and histone with molecular combing method. Acta Physica Sinica, 2005, 54(2): 622-627. doi: 10.7498/aps.54.622
    [18] Song Jun, Chen Lei, Liu De-Sheng, Xie Shi-Jie. Study on the energy levels and electronic states of DNA molecules. Acta Physica Sinica, 2004, 53(8): 2792-2795. doi: 10.7498/aps.53.2792
    [19] Wang Chen, Wang Gui-Ying, Xu Zhi-Zhan. The application of total internal reflection fluorescence microscopy in single fluorophore molecules axial imaging. Acta Physica Sinica, 2004, 53(5): 1325-1330. doi: 10.7498/aps.53.1325
    [20] Hu Guo-Qi, Zhang Xun-Sheng, Bao De-Song, Tang Xiao-Wei. The molecular dynamics simulation of the effect of channel width on twodimensional granular flow. Acta Physica Sinica, 2004, 53(12): 4277-4281. doi: 10.7498/aps.53.4277
Metrics
  • Abstract views:  5953
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2020
  • Accepted Date:  16 May 2020
  • Available Online:  25 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回