Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calibration source for OH radical based on synchronous photolysis

Wang Feng-Yang Hu Ren-Zhi Xie Pin-Hua Wang Yi-Hui Chen Hao Zhang Guo-Xian Liu Wen-Qing

Citation:

Calibration source for OH radical based on synchronous photolysis

Wang Feng-Yang, Hu Ren-Zhi, Xie Pin-Hua, Wang Yi-Hui, Chen Hao, Zhang Guo-Xian, Liu Wen-Qing
PDF
HTML
Get Citation
  • OH radical is the most important oxidant in the atmosphere, and controls the tropospheric concentration of tropospheric trace gases such as CO, SO2, NO2, CH4 and other volatile organic compounds. Accurate measurement of the concentration of OH radical in troposphere is the key to clarifying the formation mechanism of secondary pollution in China. The laser-induced fluorescence (LIF) technique is widely used in tropospheric OH radical field observation due to its high sensitivity, high selectivity, and small interference. However, the LIF technique is not an absolute measurement technology. In recent years, OH radical measurements and simulations in many field observations show that the improvement of accuracy of calibration is a way to reduce the differences. Currently, the common calibration methods are ozone-alkene method and water photolysis method. Further improving the accuracy of calibration is a key factor to ensure the accurate measurement of OH radicals. In this paper, a portable calibration method of OH radicals based on simultaneous photolysis is introduced. The synthetic air with a certain water vapor concentration is irradiated in laminar flow by 185 nm light of mercury lamp, and the photolysis of water vapor and O2 produce OH, HO2 radicals and O3. The concentration of OH radicals is calculated by oxygen concentration, water vapor concentration, ozone concentration, oxygen absorption cross section and water vapor absorption cross section. The water vapor is measured by a high-precision temperature and humidity probe, and the systematic error of the probe is corrected by 911-0016 ammonia (NH3, H2O) analyzer. As the ozone concentration is only 0.5-1 ppb in the calibration, the commercial ozone analyzer cannot meet the requirement for the measurement. A high-precision ozone analyzer O3-CRDS based on cavity-ring-down spectrocopy is built to achieve the detection limit of 15 ppt (1σ). Using the O3-CRDS analyzer, the concentration distribution coefficient of ozone in laminar flow along the radial direction of the flow tube (P = 1.9) is measured. Because the absorption cross section of oxygen at 185 nm is seriously affected by oxygen column concentration and the characteristics of mercury lamp, the oxygen absorption cross section is remeasured based on Lambert’s law, which is $ \sigma_{\rm O_2} $ = (1.25 ± 0.08)×10–20 cm2. The portable calibration device is established by establishing the corresponding relationship between ozone concentration and light intensity. By changing the concentration of water vapor in the flow tube, the OH radicals with concentrations in a range of 3×108-2.8×109 cm–3 are produced, which are used to calibrate the atmospheric OH radical measurement instrument based on LIF technique. The fluorescence signal has a good correlation with the concentration of OH. The calibration device of OH radical is used to calibrate the LIF system during “a comprehensive study of the ozone formation mechanism in Shenzhen” (STORM) field observation in Autumn 2018. The calibration results under the field condition show that the calibration uncertainty of the calibration device for LIF instrument is 13.0%, which has good stability and accuracy.
      Corresponding author: Hu Ren-Zhi, rzhu@aiofm.ac.cn ; Xie Pin-Hua, phxie@aiofm.ac.cn
    [1]

    Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z, Shao M, Zeng L M, Molina M J, Zhang R Y 2014 Proc. Natl. Acad. Sci. U.S.A. 111 17373Google Scholar

    [2]

    Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, El Haddad I, Prevot A S H 2014 Nature 514 218Google Scholar

    [3]

    Ehhalt D H 1999 Phys. Chem. Chem. Phys. 1 5401Google Scholar

    [4]

    Jaegle L, Jacob D J, Brune W H, Faloona I, Tan D, Heikes B G, Kondo Y, Sachse G W, Anderson B, Gregory G L, Singh H B, Pueschel R, Ferry G, Blake D R, Shetter R E 2000 J. Geophys. Res. Atmos. 105 3877Google Scholar

    [5]

    陆克定, 张远航 2010 化学进展 22 500

    Lu K D, Zhang Y H 2010 Prog. Chem. 22 500

    [6]

    Hofzumahaus A, Rohrer F, Lu K D, Bohn B, Brauers T, Chang C, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou S R, Shao M, Zeng L M, Wahner A, Zhang Y H 2009 Science 324 1702Google Scholar

    [7]

    Brauers T, Aschmutat U, Brandenburger U, Dorn H P, Hausmann M, Heßling M, Hofzumahaus A, Holland F, Plass-Dülmer C, Ehhalt D H 1996 Geophys. Res. Lett. 23 2545Google Scholar

    [8]

    Mauldin R L, Cantrell C A, Zondlo M, Kosciuch E, Eisele F L, Chen G, Davis D, Weber R, Crawford J, Blake D, Bandy A, Thornton D 2003 J. Geophys. Res. Atmos. 108 8796Google Scholar

    [9]

    Thomas L A G, Hard M 1995 Atmos. Sci. 52 3354Google Scholar

    [10]

    Stone D, Whalley L K, Heard D E 2012 Chem. Soc. Rev. 41 6348Google Scholar

    [11]

    Novelli A, Hens K, Ernest C T, Kubistin D, Regelin E, Elste T, Plass-Duelmer C, Martinez M, Lelieveld J, Harder H 2014 Atmos. Meas. Tech. 7 3413Google Scholar

    [12]

    Lu K D, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Haeseler R, Kita K, Kondo Y, Li X, Lou S R, Oebel A, Shao M, Zeng L M, Wahner A, Zhu T, Zhang Y H, Rohrer F 2013 Atmos. Chem. Phys. 13 1057Google Scholar

    [13]

    Ren X R, Olson J R, Crawford J H, Brune W H, Mao J Q, Long R B, Chen Z, Chen G, Avery M A, Sachse G W, Barrick J D, Diskin G S, Huey L G, Fried A, Cohen R C, Heikes B, Wennberg P O, Singh H B, Blake D R, Shetter R E 2008 J. Geophys. Res. Atmos. 113 D05310Google Scholar

    [14]

    Whalley L K, Edwards P M, Furneaux K L, Goddard A, Ingham T, Evans M J, Stone D, Hopkins J R, Jones C E, Karunaharan A, Lee J D, Lewis A C, Monks P S, Moller S J, Heard D E 2011 Atmos. Chem. Phys. 11 7223Google Scholar

    [15]

    Faloona I C, Tan D, Lesher R L, Hazen N L, Frame C L, Simpas J B, Harder H, Martinez M, Di Carlo P, Ren X R, Brune W H 2004 J. Atmos. Chem. 47 139Google Scholar

    [16]

    Hofzumahaus A, Heard D E 2016 Assessment of Local HOx and ROx Measurement Techniques: Achievements, Challenges, and Future Directions - Outcome From the International HOx Workshop 2015 endorsed by IGAC Forschungzentrum Juelich, Germany, March 23−25, 2015, p1

    [17]

    Hard T M, George L A, O'Brien R J 2002 Environ. Sci. Technol. 36 1783Google Scholar

    [18]

    Dusanter D V S, Stevens P S 2008 Atmos. Chem. Phys. 8 321Google Scholar

    [19]

    Bloss W J, Lee J D, Bloss C, Heard D E, Pilling M J, Wirtz K, Martin-Reviejo M, Siese M 2004 Atmos. Chem. Phys. 4 571Google Scholar

    [20]

    Schultz M, Heitlinger M, Mihelcic D, Volz-Thomas A 1995 J. Geophys. Res. 100 18811Google Scholar

    [21]

    Kanaya Y, Sadanaga Y, Hirokawa J, Kajii Y, Akimoto H 2001 J. Atmos. Chem. 38 73Google Scholar

    [22]

    Kono M, Lewis B R, Baldwin K G H, Gibson S T 2003 J. Chem. Phys. 118 10924Google Scholar

    [23]

    Lanzendorf E J, Hanisco T F, Donahue N M, Wennberg P O 1997 Geophys. Res. Lett. 24 3037Google Scholar

    [24]

    Creasey D J, Heard D E, Lee J D 2000 Geophys. Res. Lett. 27 1651Google Scholar

    [25]

    Hofzumahaus A, Brauers T, Aschmutat U, Brandenburger U, Dorn H P, Hausmann M, Heßling M, Holland F, Plass-Dülmer C, Sedlacek M, Weber M, Ehhalt D H 1997 Geophys. Res. Lett. 24 3039Google Scholar

    [26]

    Li Z Y, Hu R Z, Xie P H, Chen H, Liu X Y, Liang S X, Wang D, Wang F Y, Wang Y H, Lin C, Liu J G, Liu W Q 2019 Atmos. Meas. Tech. 12 3223Google Scholar

    [27]

    Cantrell C A, Zimmer A, Tyndall G S 1997 Geophys. Res. Lett. 24 2687Google Scholar

  • 图 1  流动管层流分布示意图

    Figure 1.  Schematic diagram of laminar distribution in the flow tube

    图 2  同步光解H2O和O2装置示意图

    Figure 2.  System diagram of synchronous photolysis of H2O and O2.

    图 3  O3-CRDS示意图

    Figure 3.  Schematic diagram of O3-CRDS.

    图 4  (a) 当仪器只采样零空气时, 黑点代表1 s平均的数据, 红点代表30 s的平均数据; (b)臭氧浓度的Allan方差

    Figure 4.  (a) When the instrument only samples zero air, the black point represents the average data of 1 s, and the red point represents the average data of 30 s; (b) Allan variance of ozone concentration.

    图 5  臭氧浓度分布因子P测量结果

    Figure 5.  Measurement results of ozone concentration distribution factor P.

    图 6  (a) 汞灯光强随N2O浓度变化; (b) 光强与臭氧浓度的关系

    Figure 6.  (a) Light intensity at 185 nm as a function of N2O concentration; (b) relationship between light intensity and ozone concentration.

    图 7  标定装置产生的OH自由基浓度对应LIF-OH系统荧光计数

    Figure 7.  Concentration of OH radicals produced by the calibration device corresponds to the fluorescence count of LIF-OH system.

    图 8  使用OH自由基标定装置外场标定LIF-OH系统的结果

    Figure 8.  Calibration results of LIF-OH instrument by OH radical calibration source under field conditions.

    表 1  OH自由基标定装置不确定度

    Table 1.  Uncertainty of OH radical calibration source.

    误差源不确定度来源
    臭氧分布系数P6.0%测量
    臭氧灵敏度Qv2.9%测量
    PD光强 I'1.0%测量
    水汽浓度[H2O]2.0%测量
    氧气吸收截面$ \sigma _{\rm O_2} $7.0%测量
    水汽吸收截面$ {\sigma _{{{\rm{H}}_2}{\rm{O}}}} $3.0%引用
    标定装置产生OH自由基误差10.4%计算
    DownLoad: CSV
  • [1]

    Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z, Shao M, Zeng L M, Molina M J, Zhang R Y 2014 Proc. Natl. Acad. Sci. U.S.A. 111 17373Google Scholar

    [2]

    Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, El Haddad I, Prevot A S H 2014 Nature 514 218Google Scholar

    [3]

    Ehhalt D H 1999 Phys. Chem. Chem. Phys. 1 5401Google Scholar

    [4]

    Jaegle L, Jacob D J, Brune W H, Faloona I, Tan D, Heikes B G, Kondo Y, Sachse G W, Anderson B, Gregory G L, Singh H B, Pueschel R, Ferry G, Blake D R, Shetter R E 2000 J. Geophys. Res. Atmos. 105 3877Google Scholar

    [5]

    陆克定, 张远航 2010 化学进展 22 500

    Lu K D, Zhang Y H 2010 Prog. Chem. 22 500

    [6]

    Hofzumahaus A, Rohrer F, Lu K D, Bohn B, Brauers T, Chang C, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou S R, Shao M, Zeng L M, Wahner A, Zhang Y H 2009 Science 324 1702Google Scholar

    [7]

    Brauers T, Aschmutat U, Brandenburger U, Dorn H P, Hausmann M, Heßling M, Hofzumahaus A, Holland F, Plass-Dülmer C, Ehhalt D H 1996 Geophys. Res. Lett. 23 2545Google Scholar

    [8]

    Mauldin R L, Cantrell C A, Zondlo M, Kosciuch E, Eisele F L, Chen G, Davis D, Weber R, Crawford J, Blake D, Bandy A, Thornton D 2003 J. Geophys. Res. Atmos. 108 8796Google Scholar

    [9]

    Thomas L A G, Hard M 1995 Atmos. Sci. 52 3354Google Scholar

    [10]

    Stone D, Whalley L K, Heard D E 2012 Chem. Soc. Rev. 41 6348Google Scholar

    [11]

    Novelli A, Hens K, Ernest C T, Kubistin D, Regelin E, Elste T, Plass-Duelmer C, Martinez M, Lelieveld J, Harder H 2014 Atmos. Meas. Tech. 7 3413Google Scholar

    [12]

    Lu K D, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Haeseler R, Kita K, Kondo Y, Li X, Lou S R, Oebel A, Shao M, Zeng L M, Wahner A, Zhu T, Zhang Y H, Rohrer F 2013 Atmos. Chem. Phys. 13 1057Google Scholar

    [13]

    Ren X R, Olson J R, Crawford J H, Brune W H, Mao J Q, Long R B, Chen Z, Chen G, Avery M A, Sachse G W, Barrick J D, Diskin G S, Huey L G, Fried A, Cohen R C, Heikes B, Wennberg P O, Singh H B, Blake D R, Shetter R E 2008 J. Geophys. Res. Atmos. 113 D05310Google Scholar

    [14]

    Whalley L K, Edwards P M, Furneaux K L, Goddard A, Ingham T, Evans M J, Stone D, Hopkins J R, Jones C E, Karunaharan A, Lee J D, Lewis A C, Monks P S, Moller S J, Heard D E 2011 Atmos. Chem. Phys. 11 7223Google Scholar

    [15]

    Faloona I C, Tan D, Lesher R L, Hazen N L, Frame C L, Simpas J B, Harder H, Martinez M, Di Carlo P, Ren X R, Brune W H 2004 J. Atmos. Chem. 47 139Google Scholar

    [16]

    Hofzumahaus A, Heard D E 2016 Assessment of Local HOx and ROx Measurement Techniques: Achievements, Challenges, and Future Directions - Outcome From the International HOx Workshop 2015 endorsed by IGAC Forschungzentrum Juelich, Germany, March 23−25, 2015, p1

    [17]

    Hard T M, George L A, O'Brien R J 2002 Environ. Sci. Technol. 36 1783Google Scholar

    [18]

    Dusanter D V S, Stevens P S 2008 Atmos. Chem. Phys. 8 321Google Scholar

    [19]

    Bloss W J, Lee J D, Bloss C, Heard D E, Pilling M J, Wirtz K, Martin-Reviejo M, Siese M 2004 Atmos. Chem. Phys. 4 571Google Scholar

    [20]

    Schultz M, Heitlinger M, Mihelcic D, Volz-Thomas A 1995 J. Geophys. Res. 100 18811Google Scholar

    [21]

    Kanaya Y, Sadanaga Y, Hirokawa J, Kajii Y, Akimoto H 2001 J. Atmos. Chem. 38 73Google Scholar

    [22]

    Kono M, Lewis B R, Baldwin K G H, Gibson S T 2003 J. Chem. Phys. 118 10924Google Scholar

    [23]

    Lanzendorf E J, Hanisco T F, Donahue N M, Wennberg P O 1997 Geophys. Res. Lett. 24 3037Google Scholar

    [24]

    Creasey D J, Heard D E, Lee J D 2000 Geophys. Res. Lett. 27 1651Google Scholar

    [25]

    Hofzumahaus A, Brauers T, Aschmutat U, Brandenburger U, Dorn H P, Hausmann M, Heßling M, Holland F, Plass-Dülmer C, Sedlacek M, Weber M, Ehhalt D H 1997 Geophys. Res. Lett. 24 3039Google Scholar

    [26]

    Li Z Y, Hu R Z, Xie P H, Chen H, Liu X Y, Liang S X, Wang D, Wang F Y, Wang Y H, Lin C, Liu J G, Liu W Q 2019 Atmos. Meas. Tech. 12 3223Google Scholar

    [27]

    Cantrell C A, Zimmer A, Tyndall G S 1997 Geophys. Res. Lett. 24 2687Google Scholar

  • [1] Yu Jue-Zhi, Hu Yong-Sheng, Li Hong, Huang Xue-Jie, Chen Li-Quan. Radical anion based liquid electrode materials. Acta Physica Sinica, 2017, 66(8): 088201. doi: 10.7498/aps.66.088201
    [2] Xu Mei, Linghu Rong-Feng, Zhi Qi-Jun, Yang Xiang-Dong, Wu Wei-Wei. Properties of free radical BeH in external electric field. Acta Physica Sinica, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [3] Zhu Guo-Liang, Hu Ren-Zhi, Xie Pin-Hua, Chen Hao, Qin Min, Fang Wu, Wang Dan, Xing Xing-Biao. Calibration system for OH radicals based on differential optical absorption spectroscopy. Acta Physica Sinica, 2015, 64(8): 080703. doi: 10.7498/aps.64.080703
    [4] Han Xiao-Qin. The ab initio and potential energy curve of SiF2(1A1). Acta Physica Sinica, 2014, 63(23): 233101. doi: 10.7498/aps.63.233101
    [5] Zeng Hui, Zhao Jun. Coupled-cluster single-double theory study on the analytic potential energy function of the SeN2 radicals. Acta Physica Sinica, 2014, 63(6): 063101. doi: 10.7498/aps.63.063101
    [6] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [7] Guo Lian-Bo, Hao Rong-Fei, Hao Zhong-Qi, Li Kuo-Hu, Shen Meng, Ren Zhao, Li Xiang-You, Zeng Xiao-Yan. Study on the emission spectrum of AlO radical B2+X2+ transition using laser-induced breakdown spectroscopy. Acta Physica Sinica, 2013, 62(22): 224211. doi: 10.7498/aps.62.224211
    [8] Han Xiao-Qin, Xiao Xia-Jie, Liu Yu-Fang. The ab initio potential energy curve of HNO(1A’). Acta Physica Sinica, 2013, 62(19): 193101. doi: 10.7498/aps.62.193101
    [9] Zhu Zun-Lue, Lang Jian-Hua, Qiao Hao. Study on spectroscopic properties and molecular constants of the ground and excited states of AsCl free-radical. Acta Physica Sinica, 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [10] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [11] Yang Qian-Suo, Jiang Zong-Lin, Peng Zhi-Min, Ding Yan-Jun. Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas. Acta Physica Sinica, 2011, 60(5): 053302. doi: 10.7498/aps.60.053302
    [12] Zhou Xiang, Zhang Xuan, Liu Ai-Fen, Zeng Xiang-Hua. Structure of FC(O)O2 and the mechanism of its reaction with NO. Acta Physica Sinica, 2010, 59(7): 5128-5134. doi: 10.7498/aps.59.5128
    [13] Zhu Ji-Liang, Ren Ting-Qi, Wang Qing-Mei. Structure and potential energy function of the ground state of OH(D) and SH(D). Acta Physica Sinica, 2009, 58(5): 3047-3051. doi: 10.7498/aps.58.3047
    [14] Zhao Jiang, Cui Lei, Zeng Xiang-Hua, Xu Xiu-Lian. Theoretical study on the reaction mechanism of the reaction of FC(O)O with NO. Acta Physica Sinica, 2008, 57(11): 7349-7353. doi: 10.7498/aps.57.7349
    [15] Ma Jing, Ding Lei, Gu Xue-Jun, Fang Li, Zhang Wei-Jun, Wei Li-Xia, Wang Jing, Yang Bin, Huang Chao-Qun, Qi Fei. Vacuum ultraviolet photoionization and photodissociation of C2HCl3 by synchrotron radiation. Acta Physica Sinica, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [16] Huang Chao-Qun, Wei Li-Xia, Yang Bin, Yang Rui, Wang Si-Sheng, Shan Xiao-Bin, Qi Fei, Zhang Yun-Wu, Sheng Liu-Si, Hao Li-Qing, Zhou Shi-Kang, Wang Zhen-Ya. Photoionization and dissociative photoionization study of HFC-152a using synchrotron radiation. Acta Physica Sinica, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] Li Quan, Zhu Zheng-He. Structure and potential energy function of CH, NH and OH free radical ground and low-lying states. Acta Physica Sinica, 2006, 55(1): 102-106. doi: 10.7498/aps.55.102
    [18] CHEN YANG, LU QING-ZHENG, MA XING-XIAO, GUI ZHI-FENG, ZHAO XIAN-ZHANG, LU TONG-XING. EMISSION SPECTRUM OF GAS PHASE CCl2. Acta Physica Sinica, 1992, 41(10): 1582-1589. doi: 10.7498/aps.41.1582
    [19] CHEN YANG, LU QING-ZHENG, WANG DONG-QING, SHEN LIU-SI, WANG HONG-FEI, ZHANG YUN-WU, YU SHU-QIN, MA XING-XIAO. LASER-INDUCED FLUORESCENCE EXCITATION SPECTRUM OF CCl2 COOLED IN THE SUPERSONIC JET. Acta Physica Sinica, 1991, 40(6): 885-890. doi: 10.7498/aps.40.885
    [20] FU GUANG-SHENG, WANG JIN-GUO, LI XIAO-WEI, HAN LI, Lü FU-RUN. A STUDY ON REACTION KINETICS OF THE RADICALS PRODUCED IN THE LASER-INDUCED SILANE PLASMA. Acta Physica Sinica, 1991, 40(12): 2024-2031. doi: 10.7498/aps.40.2024
Metrics
  • Abstract views:  6273
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2020
  • Accepted Date:  11 February 2020
  • Published Online:  05 May 2020

/

返回文章
返回