Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics

Yang Ru-Xia Lu Yu-Ming Zeng Li-Zhu Zhang Lu-Jia Li Guan-Nan

Citation:

Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics

Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan
PDF
HTML
Get Citation
  • The 0.7Bi1–xGdxFe0.95Ga0.05O3-0.3BaTiO3 (BGxFG-BT, x = 0, 0.05, 0.1, 0.15, 0.2) ceramics were successfully synthesized via the conventional solid-state reaction method. The effects of Gd doping on crystal structure, microstructure, dielectric, ferroelectric and magnetic properties were systematically investigated. X-ray diffraction analysis indicates that Gd doping induce a structural transition from rhombohedral (R3c) to pseudo-cubic (P4mm) in BGxFG-BT ceramics. Scanning electron microscopy results show a decrease of grain size with doping Gd in BFG-BT. The average grain sizes of the ceramics range from 3.2 μm to 6.2 μm. The dielectric constant and loss tangent are drastically increased and reduced respectively with introducing Gd into the ceramics. Temperature dependent dielectric constant presents a broad peak in the vicinity of Néel temperature (TN) for all the samples, signifying strong magnetoelectric coupling. An increment in TN is also observed as a result of Gd-doping in the temperature regions of 230 to 340 ℃. The leakage current density is reduced by about two orders of magnitude under the electric field of 20 kV/cm. This can be ascribed to the reduction of the oxygen vacancy concentration, which is confirmed by the X-ray photoelectron spectroscopy result. The ferroelectricity and ferromagnetism are also improved after the addition of Gd seen from the polarization hysteresis (P-E ) loops and the magnetization hysteresis (M-H) loops. The greatly enhanced magnetism with Mr = 0.0186 emu/g and Ms = 1.084 emu/g is obtained in the ceramic with x = 0.2, almost three point six times larger than that of the undoped ceramic.
      Corresponding author: Lu Yu-Ming, ymlu@swu.edu.cn ; Li Guan-Nan, liguannan@swu.edu.cn
    [1]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [2]

    Hur N, Park S, Sharma P A, A hn, J S, Guha S, Cheong S W 2004 Nature 429 392Google Scholar

    [3]

    Fina I, Dix N, Fàbrega L, Sánchez F, Fontcuberta J 2010 Thin Solid films 518 4634Google Scholar

    [4]

    Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B, Ramesh R 2006 Nat. Mater. 5 823Google Scholar

    [5]

    Patankar K K, Patil S A, Sivakumar K V, Mahajan R P, Kolekar Y D, Kothale M B 2000 Mater. Chem. Phys. 65 97Google Scholar

    [6]

    宋骁, 高兴森, 刘俊明 2018 物理学报 67 157512Google Scholar

    Song X, Gao X S, Liu J M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [7]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G 2003 Science 299 1719Google Scholar

    [8]

    Cheng J R, Li N, Cross L E 2003 J. Appl. Phys. 94 5153Google Scholar

    [9]

    Pradhan S K, Roul B K 2011 J. Phys. Chem. Solids 72 1180Google Scholar

    [10]

    Kumar A, Sharma P, Yang W B, Shen J D, Varshney D, Li Q 2016 Ceram. Int. 42 14805Google Scholar

    [11]

    Wang T, Song S H, Ma Q, Tan M L, Chen J J 2019 J. Alloys Comp. 795 60Google Scholar

    [12]

    Thakur S, Rai R, Tiwari A 2014 Solid State Commun. 197 1Google Scholar

    [13]

    Makoed I I, Amirov A A, Liedienov N A, Pashchenko A V, Yanushkevich K I, Yakimchuk D V, Kaniukov E Y 2019 J. Magn. Magn. Mater. 489 165379Google Scholar

    [14]

    Wang K, Si N, Zhang Y L, Zhang F, Guo A B, Jiang W 2019 Vacuum 165 105Google Scholar

    [15]

    Ivanova T L, Gagulin V V 2002 Ferroelectrics 265 241Google Scholar

    [16]

    Kumar M M, Srinath S, Kumar G S, Suryanarayana S V 1998 J. Magn. Magn. Mater. 188 203Google Scholar

    [17]

    Sharma S, Siqueiros J M, Srinet G, Kumar S 2018 J. Alloys Comp. 732 666Google Scholar

    [18]

    Hang Q M, Xing Z B, Zhu X H, Yu M, Song Y, Zhu J M, Liu Z G 2012 Ceram. Int. 3 8Google Scholar

    [19]

    Wei Y X, Wang X T, Jia J J, Wang X L 2012 Ceram. Int. 38 3499Google Scholar

    [20]

    Yang H B, Zhou C G, Liu X Y, Zhou Q, Chen G H, Wang H, Li W Z 2012 Mater. Res. Bull. 47 4233Google Scholar

    [21]

    Buscaglia M T, Mitoseriu L, Buscaglia V, Pallecchi I, Viviani M, Nanni P, Siri A S 2006 J. Eur. Ceram. Soc. 26 3027Google Scholar

    [22]

    Zhou Y N, Guo T T, Chen J, Liu X Q, Chen X M 2020 J. Alloys Comp. 819 153031Google Scholar

    [23]

    Zhao H T, Yang R X, Li Y, Liu G, Lu Y M, Tang J F, Zhang S, Li G N 2020 J. Magn. Magn. Mater. 494 165779Google Scholar

    [24]

    Liu X H, Xu Z, Qu S B, Wei X Y, Chen J L 2007 Chin. Sci. Bull. 52 2747Google Scholar

    [25]

    Pradhan S K, Das J, Rout P P, Das S K, Mishra D K, Sahu D R, Pradhan A K, Srinivasu V V, Nayak B B, Verma s, Roul V K 2010 J. Magn. Magn. Mater. 322 3614Google Scholar

    [26]

    Mukherjee A, Basu S, Manna P K, Yusuf S M, Pal M 2014 J. Alloys Comp. 598 142Google Scholar

    [27]

    Kumar M M, Srinivas A, Suryanarayana S V 2000 J. Appl. Phys. 87 855Google Scholar

    [28]

    Kumar M, Yadav K L 2007 Appl. Phys. Lett. 91 242901Google Scholar

    [29]

    Kumar K S, Venkateswaran C, Kannan D, Tiwari B, Rao M S R 2012 J. Phys. D: Appl. Phys. 45 415302Google Scholar

    [30]

    Deng X Z, Zhang J, Zhang S T 2017 J. Mater. Sci: Mater. Electron. 28 2435Google Scholar

    [31]

    Deng X L, Wang W, Gao R L, Cai W, Chen G, Fu C L 2018 J. Mater. Sci: Mater. Electron. 29 6870Google Scholar

    [32]

    Godara S, Sinha N, Kumar B 2016 Ceram. Int. 42 1782Google Scholar

    [33]

    Gowrishankar M, Babu D R, Madeswaran S 2016 J. Magn. Magn. Mater. 418 54Google Scholar

    [34]

    Cai W, Fu C L, Gao J C, Chen H Q 2009 J. Alloys Comp. 480 870Google Scholar

    [35]

    Chakrabarti C, Fu X H, Qiu Y, Yuan S L, Li C L 2020 Ceram. Int. 46 212Google Scholar

    [36]

    Qian G Y, Zhu C M, Wang LG, Tian Z M, Yin C Y, Yuan S L 2017 J. Electron. Mater. 46 6717Google Scholar

    [37]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloys Comp. 696 503Google Scholar

    [38]

    Vashisth B K, Bangruwa J S, Beniwal A, Gairola S P, Kumar A, Singh N, Verma V 2017 J. Alloys Comp. 698 699Google Scholar

    [39]

    Wei J, Liu Y, Bai X F, Li C, Liu Y L, Xu Z, Gemeiner P, Haumont R, Infante I C, Dkhil B 2016 Ceram. Int. 42 13395Google Scholar

    [40]

    Scott J F 2008 J. Phys: Condens. Matter 20 021001Google Scholar

    [41]

    Upadhyay S K, Reddy V R, Lakshmi N 2013 J. Asian Ceram. Soc. 1 346Google Scholar

    [42]

    Damerdji N O, Amrani B, Khodja K D, Aubert P 2018 J. Supercond. Novel Magn. 31 2935Google Scholar

    [43]

    Cao L Z, Cheng B L, Wang S Y, Fu W Y, Ding S, Sun Z H, Yuan H T, Zhou Y L, Chen Z H, Yang G Z 2006 J. Phys. D: Appl. Phys. 39 2819Google Scholar

    [44]

    Yu J, Chu J 2008 Sci. Bull. 53 2097Google Scholar

    [45]

    Hasan M, Basith M A, Zubair M A, Hossain M S, Mahbub R, Hakim M A, Islam M F 2016 J. Alloys Comp. 687 701Google Scholar

    [46]

    Xing Q, Han Z, Zhao S 2017 J. Mater. Sci: Mater. Electron. 28 295Google Scholar

  • 图 1  (a) BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的XRD图谱; 样品在(b) 32°, (c) 39.5°和(d) 45.7°附近局部放大图

    Figure 1.  (a) XRD patterns of BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2) ceramics. Enlarged view of peaks at (b) 32°, (c) 39.5° and (d) 45.7°.

    图 2  BGxFG - BT陶瓷样品的XRD精修图谱 (a) x = 0; (b) x = 0.1. 红色线、蓝色线和绿色线表示实验值、计算值及二者差值, 短竖线表示布拉格位置

    Figure 2.  XRD refinement of the BGxFG - BT ceramics: (a) x = 0, (b) x = 0.1. The red, blue, and green indicatethe experimental, calculated and difference value, respectively. The short bars indicate the positions of Bragg positions.

    图 3  BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的SEM图像 (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2; (f)平均晶粒尺寸随掺杂量变化的关系

    Figure 3.  The SEM images of BGxFG - BT ceramics: (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2; (f) the composition dependence of average grain size.

    图 4  BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的XPS图谱 (a) Bi 4f; (b) Fe 2p

    Figure 4.  XPS spectra of the (a) Bi 4f and (b) Fe 2p lines of BGxFG - BT (x = 0, 0.05, 0.1, 0.15 and 0.2) ceramics.

    图 5  BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷样品在频率10 kHz, 100 kHz和1 MHz下的εr和tan δ随温度的变化 (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2

    Figure 5.  Variation of εr and tan δ with temperature at frequencies 10 kHz, 100 kHz and 1 MHz for BGxFG - BT: (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.15, (e) x = 0.2.

    图 6  室温下BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷样品 (a) 漏电流J随电场E的变化和(b) log J随log E的变化

    Figure 6.  Leakage current density J of the BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2) ceramic samples as a function of the electric field E at room temperature: (a) J vs E; (b) log J vs log E

    图 7  BGxFG - BT陶瓷在室温下的电滞回线 (a) x = 0; (b) x = 0.05—0.2

    Figure 7.  Polarization versus electric field hysteresis loops of BGxFG - BT ceramics at room temperature: (a) x = 0, (b) x = 0.05–0.2.

    图 8  BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷在室温下的磁滞回线

    Figure 8.  The room temperature M-H loops of the BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2) ceramics.

    表 1  Rietveld精修获得的BGxFG-BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的晶胞参数

    Table 1.  The lattice parameters obtained by Rietveld refinement for BGxFG-BT (x = 0, 0.05, 0.1, 0.15, 0.2).

    xabcV3ρ/g·cm–3Rwp/%d/%
    0 5.6428(5) 5.6428(5) 13.8896(16) 303.01(6) 7.601(8) 11.2 96.41
    0.05 3.9886(4) 3.9886(4) 3.9923(11) 63.51(3) 7.508(4) 10.8 99.28
    0.1 3.9879(3) 3.9879(3) 3.9902(15) 63.46(3) 7.454(3) 12.3 98.91
    0.15 3.9875(4) 3.9875(4) 3.9899(8) 63.44(2) 7.421(4) 13.8 98.68
    0.2 3.9872(6) 3.9872(6) 3.9890(11) 63.41(2) 7.377(3) 15.6 98.63
    DownLoad: CSV
  • [1]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [2]

    Hur N, Park S, Sharma P A, A hn, J S, Guha S, Cheong S W 2004 Nature 429 392Google Scholar

    [3]

    Fina I, Dix N, Fàbrega L, Sánchez F, Fontcuberta J 2010 Thin Solid films 518 4634Google Scholar

    [4]

    Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B, Ramesh R 2006 Nat. Mater. 5 823Google Scholar

    [5]

    Patankar K K, Patil S A, Sivakumar K V, Mahajan R P, Kolekar Y D, Kothale M B 2000 Mater. Chem. Phys. 65 97Google Scholar

    [6]

    宋骁, 高兴森, 刘俊明 2018 物理学报 67 157512Google Scholar

    Song X, Gao X S, Liu J M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [7]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G 2003 Science 299 1719Google Scholar

    [8]

    Cheng J R, Li N, Cross L E 2003 J. Appl. Phys. 94 5153Google Scholar

    [9]

    Pradhan S K, Roul B K 2011 J. Phys. Chem. Solids 72 1180Google Scholar

    [10]

    Kumar A, Sharma P, Yang W B, Shen J D, Varshney D, Li Q 2016 Ceram. Int. 42 14805Google Scholar

    [11]

    Wang T, Song S H, Ma Q, Tan M L, Chen J J 2019 J. Alloys Comp. 795 60Google Scholar

    [12]

    Thakur S, Rai R, Tiwari A 2014 Solid State Commun. 197 1Google Scholar

    [13]

    Makoed I I, Amirov A A, Liedienov N A, Pashchenko A V, Yanushkevich K I, Yakimchuk D V, Kaniukov E Y 2019 J. Magn. Magn. Mater. 489 165379Google Scholar

    [14]

    Wang K, Si N, Zhang Y L, Zhang F, Guo A B, Jiang W 2019 Vacuum 165 105Google Scholar

    [15]

    Ivanova T L, Gagulin V V 2002 Ferroelectrics 265 241Google Scholar

    [16]

    Kumar M M, Srinath S, Kumar G S, Suryanarayana S V 1998 J. Magn. Magn. Mater. 188 203Google Scholar

    [17]

    Sharma S, Siqueiros J M, Srinet G, Kumar S 2018 J. Alloys Comp. 732 666Google Scholar

    [18]

    Hang Q M, Xing Z B, Zhu X H, Yu M, Song Y, Zhu J M, Liu Z G 2012 Ceram. Int. 3 8Google Scholar

    [19]

    Wei Y X, Wang X T, Jia J J, Wang X L 2012 Ceram. Int. 38 3499Google Scholar

    [20]

    Yang H B, Zhou C G, Liu X Y, Zhou Q, Chen G H, Wang H, Li W Z 2012 Mater. Res. Bull. 47 4233Google Scholar

    [21]

    Buscaglia M T, Mitoseriu L, Buscaglia V, Pallecchi I, Viviani M, Nanni P, Siri A S 2006 J. Eur. Ceram. Soc. 26 3027Google Scholar

    [22]

    Zhou Y N, Guo T T, Chen J, Liu X Q, Chen X M 2020 J. Alloys Comp. 819 153031Google Scholar

    [23]

    Zhao H T, Yang R X, Li Y, Liu G, Lu Y M, Tang J F, Zhang S, Li G N 2020 J. Magn. Magn. Mater. 494 165779Google Scholar

    [24]

    Liu X H, Xu Z, Qu S B, Wei X Y, Chen J L 2007 Chin. Sci. Bull. 52 2747Google Scholar

    [25]

    Pradhan S K, Das J, Rout P P, Das S K, Mishra D K, Sahu D R, Pradhan A K, Srinivasu V V, Nayak B B, Verma s, Roul V K 2010 J. Magn. Magn. Mater. 322 3614Google Scholar

    [26]

    Mukherjee A, Basu S, Manna P K, Yusuf S M, Pal M 2014 J. Alloys Comp. 598 142Google Scholar

    [27]

    Kumar M M, Srinivas A, Suryanarayana S V 2000 J. Appl. Phys. 87 855Google Scholar

    [28]

    Kumar M, Yadav K L 2007 Appl. Phys. Lett. 91 242901Google Scholar

    [29]

    Kumar K S, Venkateswaran C, Kannan D, Tiwari B, Rao M S R 2012 J. Phys. D: Appl. Phys. 45 415302Google Scholar

    [30]

    Deng X Z, Zhang J, Zhang S T 2017 J. Mater. Sci: Mater. Electron. 28 2435Google Scholar

    [31]

    Deng X L, Wang W, Gao R L, Cai W, Chen G, Fu C L 2018 J. Mater. Sci: Mater. Electron. 29 6870Google Scholar

    [32]

    Godara S, Sinha N, Kumar B 2016 Ceram. Int. 42 1782Google Scholar

    [33]

    Gowrishankar M, Babu D R, Madeswaran S 2016 J. Magn. Magn. Mater. 418 54Google Scholar

    [34]

    Cai W, Fu C L, Gao J C, Chen H Q 2009 J. Alloys Comp. 480 870Google Scholar

    [35]

    Chakrabarti C, Fu X H, Qiu Y, Yuan S L, Li C L 2020 Ceram. Int. 46 212Google Scholar

    [36]

    Qian G Y, Zhu C M, Wang LG, Tian Z M, Yin C Y, Yuan S L 2017 J. Electron. Mater. 46 6717Google Scholar

    [37]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloys Comp. 696 503Google Scholar

    [38]

    Vashisth B K, Bangruwa J S, Beniwal A, Gairola S P, Kumar A, Singh N, Verma V 2017 J. Alloys Comp. 698 699Google Scholar

    [39]

    Wei J, Liu Y, Bai X F, Li C, Liu Y L, Xu Z, Gemeiner P, Haumont R, Infante I C, Dkhil B 2016 Ceram. Int. 42 13395Google Scholar

    [40]

    Scott J F 2008 J. Phys: Condens. Matter 20 021001Google Scholar

    [41]

    Upadhyay S K, Reddy V R, Lakshmi N 2013 J. Asian Ceram. Soc. 1 346Google Scholar

    [42]

    Damerdji N O, Amrani B, Khodja K D, Aubert P 2018 J. Supercond. Novel Magn. 31 2935Google Scholar

    [43]

    Cao L Z, Cheng B L, Wang S Y, Fu W Y, Ding S, Sun Z H, Yuan H T, Zhou Y L, Chen Z H, Yang G Z 2006 J. Phys. D: Appl. Phys. 39 2819Google Scholar

    [44]

    Yu J, Chu J 2008 Sci. Bull. 53 2097Google Scholar

    [45]

    Hasan M, Basith M A, Zubair M A, Hossain M S, Mahbub R, Hakim M A, Islam M F 2016 J. Alloys Comp. 687 701Google Scholar

    [46]

    Xing Q, Han Z, Zhao S 2017 J. Mater. Sci: Mater. Electron. 28 295Google Scholar

Metrics
  • Abstract views:  6887
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  04 February 2020
  • Accepted Date:  02 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回