Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical design of frequency-split Weyl points in Weyl metamaterial

Zhou Xiao-Xi Hu Chuan-Deng Lu Wei-Xin Lai Yun Hou Bo

Citation:

Numerical design of frequency-split Weyl points in Weyl metamaterial

Zhou Xiao-Xi, Hu Chuan-Deng, Lu Wei-Xin, Lai Yun, Hou Bo
PDF
HTML
Get Citation
  • Weyl semimetal has the massless and chiral low-energy electronic excitation charateristic, and its quasi-particle behavior can be described by Weyl equation, and may lead to appealing transport properties, such as Fermi arc surface state, negative magnetic resistance, chiral Landau level, etc. By analogous with Weyl semimetal, one has realized Weyl point degeneracy of electromagnetic wave in an ideal Weyl metamaterial. In this article, by breaking the mirror symmetry of the saddle-shaped meta-atom structure, we theoretically investigate chirality-dependent split and shift effect of Weyl point frequencies which would otherwise be identical. The frequency shift can be tuned by the symmetry-broken intensity. Finally, we study the Fermi arc surface state connecting two Weyl points on $\left\langle {001} \right\rangle $ crystal surface.
      Corresponding author: Hu Chuan-Deng, chuae@connect.ust.hk ; Hou Bo, houbo@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474212)
    [1]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (New York: Holt, Rinehart and Winston) pp284–311

    [2]

    张智强, 蒋庆东, 陈垂针, 江华 2018 物理学进展 38 101Google Scholar

    Zhang Z Q, Jiang Q D, Chen C Z, Jiang H 2018 Progr. Phys. 38 101Google Scholar

    [3]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [4]

    Burkov A A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [5]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [6]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [7]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M, Zahid 2015 Science 349 613Google Scholar

    [8]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 0110291

    [9]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [10]

    Huang L N, Mccormick T M, Ochi M, Zhao Z Y, Suzuki M T, Arita R, Wu Y, Mou D X, Cao H B, Yan J Q, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [11]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photonics 8 821Google Scholar

    [12]

    Lu L, Wang Z Y, Ye D X, Ran L X, Fu L, Joannopoulos J D, Soljacic M 2015 Science 349 622Google Scholar

    [13]

    Chen W J, Xiao M, Chan C T 2016 Nat. Commun. 7 13038Google Scholar

    [14]

    Noh J, Huang S, Leykam D, Chong Y D, Chen K P, Rechtsman M C 2017 Nat. Phys. 13 611Google Scholar

    [15]

    Yang B, Guo Q H, Tremain B, Barr L E, Gao W L, Liu H C, Beri B, Xiang Y J, Fan D Y, Hibbins A P, Zhang S 2017 Nat. Commun. 8 7Google Scholar

    [16]

    Yang Y H, Gao Z, Xue H R, Zhang L, He M J, Yang Z J, Singh R J, Chong Y D, Zhang B L, Chen H S 2019 Nature 565 622Google Scholar

    [17]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [18]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [19]

    Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J, Fang C, Hibbins A, Lu L, Zhang S 2018 Science 359 1013Google Scholar

    [20]

    Nguyen V H, Charlier J C 2018 Phys. Rev. B 97 235113Google Scholar

    [21]

    Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y, Yang S A 2017 NPJ Quantum Mater. 2 23Google Scholar

    [22]

    Westström A, Ojanen T 2017 Phys. Rev. X 7 041026

    [23]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [24]

    Urzhumov Y A, Smith D R 2010 Phys. Rev. Lett. 105 163901Google Scholar

    [25]

    Lu H Z 2019 Natl. Sci. Rev. 6 208Google Scholar

    [26]

    Zhang C, Zhang Y, Yuan X, Lu S H, Zhang J L, Narayan A, Liu Y W, Zhang H Q, Ni Z L, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, Xiu F X 2019 Nature 565 331Google Scholar

  • 图 1  (a)马鞍形超构原子, 灰色阴影为z方向的截面; (b)−(d)圆柱在截面上的正方形分布到菱形分布的变化过程

    Figure 1.  (a) Unit cell where the gray surface is a cut plane along z direction; (b)−(d) the process of changing the positions of four metallic rods from square to rhombus structure.

    图 2  (a)$ \theta $ = 77.31°的晶胞结构; (b)第一布里渊区示意图, 蓝色点和红色点代表不同手性的外尔点, 分布在$ {k}_{z} $ = 0的切面; (c)数值计算的能带结构, 蓝色阴影代表只有外尔点简并能带出现的频率区间

    Figure 2.  (a) Unit cell where $ \theta $ = 77.31°; (b) the first Brillouin zone where blue dots and red dots represent, respectively, the Weyl points of different chirality; (c) the numerically calculated band structure, where shaded region denotes the frequency range with only Weyl degenerate bands appears.

    图 3  (a)−(d) 不同$ \theta $角度下的能带结构, 分别对应$ \theta $ = 90°, 81.18°, 77.31°, 60°, 其中示意插图是超构原子的顶视图, 蓝色阴影代表只有外尔点简并能带出现的频率区间

    Figure 3.  (a)−(d) Band structure with $ \theta $ = 90°, 81.18°, 77.31° and 60°, respectively. The inset is the top view of meta-atom, and the shaded region denotes the frequency range with only Weyl degenerate bands appears.

    图 4  (a) 第一布里渊区内两个切面示意图, 黄色平面代表$ {k}_{x} $ = 0.432的切面, 虚线代表两个切面的交线; (b) $ {k}_{x} $ = 0.432时的体投影能带(灰色曲线)和$\left\langle {001} \right\rangle $晶面的表面态(蓝色和红色曲线); (c) 相应的电场强度剖面图, 标记对应于(b)里的位置, 水平方向为z方向; (d) 第一布里渊区内两个切面示意图, 黄色平面代表$ {k}_{x}={k}_{y} $的切面, 虚线代表两个切面的交线; (e) Γ M方向的体投影能带(灰色曲线)和$\left\langle {001} \right\rangle $晶面的表面态(桔色曲线); (f)相应的电场强度剖面图, 标记对应于(e)里的位置, 水平方向为z方向

    Figure 4.  (a) Two cut planes in the first Brillouin zone where the yellow plane represents the plane of $ {k}_{x} $ = 0.432 and the dashed line denotes the intersecting line of two planes; (b) the projected bulk bands (grey curves) and the associated $\left\langle {001} \right\rangle $ surface state (blue and red curves) at $ {k}_{x} $ = 0.432; (c) the magnitude of E -fields of the eigenmodes for different marks in (b), where z axis is horizontal; (d) two cut planes in the first Brillouin zone where the yellow plane represents the plane of $ {k}_{x}={k}_{y} $ and the dashed line denotes the intersecting line of two planes; (e) the projected bulk bands (grey curves) and the associated $\left\langle {001} \right\rangle $ surface state (orange curves) along ΓM; (f) the magnitude of E -fields of the eigenmodes for different marks in (e), where z axis is horizontal.

    表 1  外尔点的频移效应

    Table 1.  Frequency shift of Weyl points.

    角度/(°)外尔点频率/GHz频差/GHz带宽/GHz
    $ {f}_{1} $中心频率$ {f}_{2} $
    9015.7015.7015.7003.07
    81.1815.9015.6915.480.432.29
    77.3116.0715.7015.330.741.93
    6016.4015.58514.771.630
    DownLoad: CSV
  • [1]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (New York: Holt, Rinehart and Winston) pp284–311

    [2]

    张智强, 蒋庆东, 陈垂针, 江华 2018 物理学进展 38 101Google Scholar

    Zhang Z Q, Jiang Q D, Chen C Z, Jiang H 2018 Progr. Phys. 38 101Google Scholar

    [3]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [4]

    Burkov A A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [5]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [6]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [7]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M, Zahid 2015 Science 349 613Google Scholar

    [8]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 0110291

    [9]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [10]

    Huang L N, Mccormick T M, Ochi M, Zhao Z Y, Suzuki M T, Arita R, Wu Y, Mou D X, Cao H B, Yan J Q, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [11]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photonics 8 821Google Scholar

    [12]

    Lu L, Wang Z Y, Ye D X, Ran L X, Fu L, Joannopoulos J D, Soljacic M 2015 Science 349 622Google Scholar

    [13]

    Chen W J, Xiao M, Chan C T 2016 Nat. Commun. 7 13038Google Scholar

    [14]

    Noh J, Huang S, Leykam D, Chong Y D, Chen K P, Rechtsman M C 2017 Nat. Phys. 13 611Google Scholar

    [15]

    Yang B, Guo Q H, Tremain B, Barr L E, Gao W L, Liu H C, Beri B, Xiang Y J, Fan D Y, Hibbins A P, Zhang S 2017 Nat. Commun. 8 7Google Scholar

    [16]

    Yang Y H, Gao Z, Xue H R, Zhang L, He M J, Yang Z J, Singh R J, Chong Y D, Zhang B L, Chen H S 2019 Nature 565 622Google Scholar

    [17]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [18]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [19]

    Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J, Fang C, Hibbins A, Lu L, Zhang S 2018 Science 359 1013Google Scholar

    [20]

    Nguyen V H, Charlier J C 2018 Phys. Rev. B 97 235113Google Scholar

    [21]

    Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y, Yang S A 2017 NPJ Quantum Mater. 2 23Google Scholar

    [22]

    Westström A, Ojanen T 2017 Phys. Rev. X 7 041026

    [23]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [24]

    Urzhumov Y A, Smith D R 2010 Phys. Rev. Lett. 105 163901Google Scholar

    [25]

    Lu H Z 2019 Natl. Sci. Rev. 6 208Google Scholar

    [26]

    Zhang C, Zhang Y, Yuan X, Lu S H, Zhang J L, Narayan A, Liu Y W, Zhang H Q, Ni Z L, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, Xiu F X 2019 Nature 565 331Google Scholar

  • [1] Zou Dan-Dan, Tu Chen-Sheng, Hu Ping-Zi, Li Chun-Hua, Qian Mu-Yang. Mechanism of low-temperature helical streamer discharge driven by pulsed electromagnetic field. Acta Physica Sinica, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [2] Liu Jie, Chen Wei, Yang Qiu-Lin, Mu Gen, Gao Hao, Shen Tao, Yang Si-Hua, Zhang Zhen-Hui. Research and development of polarized photoacoustic imaging technology. Acta Physica Sinica, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [3] Guan Xin, Chen Gang, Pan Jing, You Xiu-Fen, Gui Zhi-Guo. Ground-state chiral currents in the synthetic Hall tube. Acta Physica Sinica, 2022, 71(16): 160303. doi: 10.7498/aps.71.20220293
    [4] Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong. Experimental observation of chiral inversion at exceptional points of non-Hermitian systems. Acta Physica Sinica, 2022, 71(13): 131101. doi: 10.7498/aps.71.20220842
    [5] Shi Shu-Shu, Xiao Shan, Xu Xiu-Lai. Chiral optical transport of quantum dots with different diamagnetic behaviors in a waveguide. Acta Physica Sinica, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [6] Chen Ze-Rui, Liu Guang-Cun, Yu Zhen-Hua. Collision clock shift of two Fermi atoms in harmonic potentials. Acta Physica Sinica, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [7] Yu Peng, Wang Bao-Qing, Wu Xiao-Hu, Wang Wen-Hao, Xu Hong-Xing, Wang Zhi-Ming. Circular dichroism of honeycomb-shaped elliptical hole absorber. Acta Physica Sinica, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [8] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [9] Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa. Phonon angular momentum and chiral phonons. Acta Physica Sinica, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [10] Zou Dan-Dan, Cai Zhi-Chao, Wu Peng, Li Chun-Hua, Zeng Han, Zhang Hong-Li, Cui Chun-Mei. Plasma characteristics of helical streamers induced by pulsed discharges. Acta Physica Sinica, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [11] Wang Wei-Dong, Li Long-Long, Yang Chen-Guang, Li Ming-Lin. Molecular dynamics study on relaxation properties of monolayer MoS2 nanoribbons. Acta Physica Sinica, 2016, 65(16): 160201. doi: 10.7498/aps.65.160201
    [12] Qiang Fan, Zhu Jing-Ping, Zhang Yun-Yao, Zhang Ning, Li Hao, Zong Kang, Cao Ying-Yu. Reconstruction of polarization parameters in channel modulated polarization imaging system. Acta Physica Sinica, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [13] Zhou Fei, Cao Yuan, Yong Hai-Lin, Peng Cheng-Zhi, Wang Xiang-Bin. Photon frequency shift based on electro-optic effect. Acta Physica Sinica, 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [14] Lin Zhi-Li. Seidel aberration of left-handed media lens systems. Acta Physica Sinica, 2007, 56(10): 5758-5765. doi: 10.7498/aps.56.5758
    [15] Peng Yong-Jin, Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. The E1 and E2 vibrational modes at Γ point for chiral single wall carbon nanotubes. Acta Physica Sinica, 2006, 55(6): 2860-2864. doi: 10.7498/aps.55.2860
    [16] Shen Jian-Qi, Zhuang Fei.  Left-right coupling of circularly polarized light propagating inside biaxially gyrotropic left-handed media. Acta Physica Sinica, 2004, 53(6): 2000-2004. doi: 10.7498/aps.53.2000
    [17] Xu Han, Chang Wen-Wei, Yin Yan. Frequency shift of laser pulse propagating in wakefield. Acta Physica Sinica, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
    [18] Tao Wei-Dong, Xia Hai-Peng, Bai Gui-Ru, Dong Jian-Feng, Nie Qiu-Hua. . Acta Physica Sinica, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
    [19] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. . Acta Physica Sinica, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [20] CHU XIN-ZHAO, LIU SHU-QIN, DONG TAI-QIAN. MICROWAVE POWER FREQUENCY SHIFT IN THE 87Rb ATOMIC FREQUENCY STANDARD. Acta Physica Sinica, 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
Metrics
  • Abstract views:  5626
  • PDF Downloads:  210
  • Cited By: 0
Publishing process
  • Received Date:  09 February 2020
  • Accepted Date:  11 March 2020
  • Available Online:  12 May 2020
  • Published Online:  05 August 2020

/

返回文章
返回