Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Process deviation based electrical model of voltage controlled magnetic anisotropy magnetic tunnel junction and its application in read/write circuits

Jin Dong-Yue Chen Hu Wang You Zhang Wan-Rong Na Wei-Cong Guo Bin Wu Ling Yang Shao-Meng Sun Sheng

Citation:

Process deviation based electrical model of voltage controlled magnetic anisotropy magnetic tunnel junction and its application in read/write circuits

Jin Dong-Yue, Chen Hu, Wang You, Zhang Wan-Rong, Na Wei-Cong, Guo Bin, Wu Ling, Yang Shao-Meng, Sun Sheng
PDF
HTML
Get Citation
  • As one of the primary elements in magnetoresistive random access memory (MRAM), voltage controlled magnetic anisotropy magnetic tunnel junction (VCMA-MTJ) has received wide attention due to its fast read and write speed, low power dissipation, and compatibility with standard CMOS technology. However, with the downscaling of VCMA-MTJ and the increasing of storage density of MRAM, the effect of process deviation on the characteristics of MTJ becomes more and more obvious, which even leads to Read/Write (R/W) error in VCMA-MTJ circuits. Taking into account the depth deviation of the free layer (γtf) and the depth deviation of the oxide barrier layer (γtox) in magnetron sputtering technique as well as the etching process stability factor (α) caused by the sidewall re-deposition layer in the ion beam etching process, the electrical model of VCMA-MTJ with process deviation is presented in the paper. It is shown that the VCMA-MTJ cannot achieve the effective reversal of the magnetization direction when γtf ≥ 13% and γtox ≥ 11%. The precession of magnetization direction in VCMA-MTJ also becomes instable when α ≤ 0.7. Furthermore, the electrical model of VCMA-MTJ with process deviation is also applied to the R/W circuit to study the effect of process deviation on the R/W error in the circuit. Considering the fact that all of γtf, γtox, and α follow Gauss distribution, The 3σ/μ is adopted to represent the process deviation, with using Monte Carlo simulation, where σ is the standard deviation, and μ is the average value. It is shown that the write error of the circuit goes up to 30 % with 3σ/μ of 0.05 and the voltage (Vb) of 1.15 V. At the same time, the read error of the circuit is 20% with 3σ/μ of 0.05 and driving voltage (Vdd) of 0.6 V. Both the read error rate and the write error rate of the VCMA-MTJ circuit increase as process deviation increases. It is found that the write error rate can be effectively reduced by increasing Vb and reducing the voltage pulse width (tpw). The increasing of Vdd is helpful in reducing the read error rate effectively. Our research presents a useful guideline for designing and analyzing the VCMA-MTJ and VCMA-MTJ read/write circuits.
      Corresponding author: Jin Dong-Yue, dyjin@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006059, 6177402, 61901010), Beijing Natural Science Foundation, China (Grant Nos. 4143059, 4192014, 4204092), Beijing Municipal Education Committee Project, China (Grant No. KM201710005027), Postdoctoral Science Foundation of Beijing, China (Grant No. 2015ZZ-11), China Postdoctoral Science Foundation (Grant Nos. 2015M580951, 2019M650404), and Beijing Future Chip Technology High-tech Innovation Center Scientific Research Fund, China (Grant No. KYJJ2016008)
    [1]

    Ikegawa S, Mancoff F B, Janesky J, Aggarwal S 2020 IEEE Trans. Electron Devices 67 1407Google Scholar

    [2]

    Nehra V, Prajapati S, Tankwal P, Zilic Z, Kumar T N, Kaushik B K 2020 IEEE Trans. Magn. 56 1Google Scholar

    [3]

    Sun Y, Gu J, He W, Wang Q, Jing N, Mao Z, Qian W, Jiang L 2019 IEEE Trans. Circuits Syst. II-Express Briefs 66 753Google Scholar

    [4]

    Burr G W, Brightsky M J, Sebastian A, Cheng H, Wu J, Kim S, Sosa N E, Papandreou N, Lung H, Pozidis H, Eleftheriou E, Lam C H 2016 IEEE J. Emerg. Sel. Topics Circuits Syst. 6 146Google Scholar

    [5]

    Wang C Z, Zhang D M, Zhang K L, Zeng L, Wang Y, Hou Z Y, Zhang Y G, Zhao W S 2020 IEEE Trans. Magn. 67 1965Google Scholar

    [6]

    Ryu J W, Kwon K W 2016 IEEE Trans. Magn. 52 1Google Scholar

    [7]

    Prajapati S, Kaushik B K 2018 IEEE Trans. Magn. 55 1Google Scholar

    [8]

    Lee D G, Park S G 2017 IEEE Trans. Magn. 53 1Google Scholar

    [9]

    Khalili A P, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Wang K L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [10]

    Zhang X L, Wang C J, Liu Y W, Zhang Z Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719Google Scholar

    [11]

    Miriyala V P K, Fong X, Liang G 2019 IEEE Trans. Electron Devices. 66 944Google Scholar

    [12]

    Long M, Zeng L, Gao T, Zhang D, Qin X, Zhang Y, Zhao W 2018 IEEE Trans. Nanotechnol. 17 492Google Scholar

    [13]

    Song J, Ahmed I, Zhao Z, Zhang D, Sapatnekar S S, Wang J P, Kim C H 2018 IEEE J. Explor. Solid-State Computat. Dev. Circ. 4 76Google Scholar

    [14]

    Cao K, Li H, Cai W, Wei J, Wang L, Hu Y, Jiang Q, Cui H, Zhao C, Zhao W 2019 IEEE Trans. Magn. 55 1Google Scholar

    [15]

    Jaiswal A, Agrawal A, Roy K 2018 Sci. Rep. 8 1Google Scholar

    [16]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 5Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 5Google Scholar

    [17]

    Kang W, Ran Y, Zhang Y, Lü W, Zhao W 2017 IEEE Trans. Nanotechnol. 16 387Google Scholar

    [18]

    Lee H, Lee A, Wang S, Ebrahimi F, Gupta P, Amiri P K, Wang K L 2018 IEEE Trans. Magn. 54 1Google Scholar

    [19]

    Alzate J G, Amiri P K, Upadhyaya P, Cherepov S S, Zhu J, Lewis M, Dorrance R, Katine J A, Langer J, Galatsis K 2012 2012 International Electron Devices Meeting San Francisco, US, December 10–13, 2012 p51

    [20]

    Niranjan M K, Duan C G, Jaswal S S, Tsymbal E Y 2010 Appl. Phys. Lett. 96 222504Google Scholar

    [21]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [22]

    Ahmed R, Victora R H 2018 Appl. Phys. Lett. 112 182401Google Scholar

    [23]

    Alzate Vinasco J G 2014 Ph. D. Dissertation (California: University of California, Los Angeles

    [24]

    Tsunekawa K, Nagamine Y, Maehara H, Djayaprawira D D, Watanabe N 2007 2006 IEEE International Magnetics Conference San Diego, US, May 8–12, 2006 p855

    [25]

    Rata A D, Braak H, Bürgler D E, Schneider C M 2007 Appl. Phys. Lett. 90 162512Google Scholar

    [26]

    Zhao W, Zhao X, Zhang B, Cao K, Wang L, Kang W, Shi Q, Wang M, Zhang Y, Wang Y 2016 Materials 9 41Google Scholar

    [27]

    Wang Y, Cai H, Naviner L A B, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [28]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721Google Scholar

    [29]

    Chen E, Schwarz B, Choi C J, Kula W, Wolfman J, Ounadjela K, Geha S 2003 J. Appl. Phys. 93 8379Google Scholar

    [30]

    Ohsawa Y, Shimomura N, Daibou T, Kamiguchi Y, Shirotori S, Inokuchi T, Saida D, Altansargai B, Kato Y, Yoda H 2016 IEEE Trans. Magn. 52 1Google Scholar

    [31]

    Ip V, Huang S, Carnevale S D, Berry I L, Rook K, Lill T B, Paranjpe A P, Cerio F 2017 IEEE Trans. Magn. 53 1Google Scholar

    [32]

    Sugiura K, Takahashi S, Amano M, Kajiyama T, Iwayama M, Asao Y, Shimomura N, Kishi T, Ikegawa S, Yoda H 2009 Jpn. J. Appl. Phys. 48 08HD02Google Scholar

    [33]

    Takahashi S, Kai T, Shimomura N, Ueda T, Amano M, Yoshikawa M, Kitagawa E, Asao Y, Ikegawa S, Kishi T 2006 IEEE Trans. Magn. 42 2745Google Scholar

    [34]

    Xue L, Nistor L, Ahn J, Germain J, Ching C, Balseanu M, Trinh C, Chen H, Hassan S, Pakala M 2014 IEEE Trans. Magn. 50 1Google Scholar

    [35]

    Wang Y, Zhang Y, Deng E Y, Klein J O, Naviner L A B, Zhao W S 2014 Microelectron. Reliab. 54 1774Google Scholar

    [36]

    Aggarwal S, Almasi H, DeHerrera M, Hughes B, Ikegawa S, Janesky J, Lee H K, Lu H, Mancoff F B, Nagel K, Shimon G, Sun J J, Andre T, Alam S M 2019 2019 IEEE International Electron Devices Meeting (IEDM) San Francisco, USA, December 7–11, 2019 p18

    [37]

    Li J, Augustine C, Salahuddin S, Roy K 2008 Proceedings of the 45th annual Design Automation Conference New York, USA, June, 2008 p278

  • 图 1  VCMA-MTJ结构示意图

    Figure 1.  Schematic structure of the VCMA-MTJ device.

    图 2  VCMA-MTJ的磁化动力学示意图 (a)不同电压对MTJ磁化状态能量势垒的影响; (b)Vb < VC的情况; (c)Vb > VC的情况

    Figure 2.  Illustration of magnetization dynamics for the VCMA-MTJ device: (a) The impacts of different voltages on the energy barrier of MTJ; (b) at a relatively low voltage (Vb < VC); (c) at a high positive voltage (Vb > VC).

    图 3  VCMA-MTJ磁化状态随时间的变化曲线, 其中插图是切换速度的定义

    Figure 3.  Magnetization state versus time of VCMA-MTJ, the inset represents the definition of the switching speed.

    图 4  不同Vb对VCMA-MTJ磁化状态切换速度的影响, 其中tpw = 0.4 ns

    Figure 4.  Effect of Vb on the magnetization direction switching speed of VCMA-MTJ at tpw = 0.4 ns.

    图 5  不同tpw对VCMA-MTJ磁化状态切换的影响, 插图为与图2(c)相对应的mz变化情况

    Figure 5.  Effect of tpw on the magnetization direction switching of VCMA-MTJ, the inset shows the precession of mz corresponding to Fig. 2(c).

    图 6  薄膜生长工艺产生的厚度偏差示意图

    Figure 6.  Schematic illustration of thickness deviation caused by the thin film growth process.

    图 7  γtf对VCMA-MTJ磁化方向切换的影响, 其中Vb = 1.2 V, tpw = 0.4 ns

    Figure 7.  Effect of γtf on the magnetization direction switchingof VCMA-MTJ at Vb = 1.2 V, tpw = 0.4 ns.

    图 8  不同γtox对VCMA-MTJ磁化状态切换的影响, 其中Vb = 1.1 V, tpw = 0.4 ns

    Figure 8.  Effect of γtox on magnetization direction switching of VCMA-MTJ at Vb = 1.1 V and tpw = 0.4 ns.

    图 9  离子束刻蚀产生侧壁再沉积层示意图 (a)刻蚀产生磁性粒子; (b)粒子聚集形成再沉积层

    Figure 9.  Illustration of the formation of the sidewall re-deposited layer with ion beam etching: (a) Producing of magnetic particleses with etching process; (b) formation of the re-deposition layer with magnetic particleses.

    图 10  不同α对VCMA-MTJ磁化方向切换的影响

    Figure 10.  Effect of α on magnetization direction switching of VCMA-MTJ.

    图 11  VCMA-MTJ读写电路

    Figure 11.  Reading and writing circuit of VCMA-MTJ.

    图 12  VCMA-MTJ读写电路的仿真波形

    Figure 12.  Simulation waveform of the reading and writing circuit of VCMA-MTJ.

    图 13  VCMA-MTJ写电路的蒙特卡洛仿真波形, 其中N = 100, 3σ/μ = 0.03, Vb = 1.2 V, tpw = 0.4 ns

    Figure 13.  Monte Carlo simulation waveform of the writing circuit of VCMA-MTJ at N = 100, 3σ/μ = 0.03, Vb = 1.2 V, tpw = 0.4 ns.

    图 14  不同Vb下写错误率随3σ/μ的变化关系

    Figure 14.  Writing error rate versus 3σ/μ at different Vb

    图 15  不同tpw下写错误率随3σ/μ的变化关系

    Figure 15.  Writing error rate versus 3σ/μ at different tpw.

    图 16  VCMA-MTJ读电路的蒙特卡洛仿真波形, 其中N = 100, 3σ/μ = 0.07, Vdd = 0.8 V

    Figure 16.  Monte Carlo simulation waveform of the reading circuit of VCMA-MTJ at N = 100, 3σ/μ = 0.07, Vdd = 0.8 V

    图 17  不同Vdd下读错误率随3σ/μ的变化关系

    Figure 17.  Reading error rate versus 3σ/μ at different Vdd.

    表 1  VCMA-MTJ模型参数列表

    Table 1.  Parameters of the VCMA-MTJ model.

    参数符号数值单位
    氧化势垒层厚度标准值tox1.4nm
    垂直磁各向异性系数Ki0.32mJ/m2
    电压调控磁各项异性系数ξ60fJ/(V·m)
    自由层厚度标准值tf1.1nm
    简化的旋磁比γ2.21 × 105m/(A·s)
    磁导率μ01.256 × 10–6H/m
    吉尔伯特阻尼因子αd0.05
    饱和磁化强度Ms0.625 × 106A/m
    x, y 轴退磁因子Nx, y0.0168
    z 轴退磁因子Nz0.966
    外加磁场在 x 轴分量Hx31830A/m
    DownLoad: CSV
  • [1]

    Ikegawa S, Mancoff F B, Janesky J, Aggarwal S 2020 IEEE Trans. Electron Devices 67 1407Google Scholar

    [2]

    Nehra V, Prajapati S, Tankwal P, Zilic Z, Kumar T N, Kaushik B K 2020 IEEE Trans. Magn. 56 1Google Scholar

    [3]

    Sun Y, Gu J, He W, Wang Q, Jing N, Mao Z, Qian W, Jiang L 2019 IEEE Trans. Circuits Syst. II-Express Briefs 66 753Google Scholar

    [4]

    Burr G W, Brightsky M J, Sebastian A, Cheng H, Wu J, Kim S, Sosa N E, Papandreou N, Lung H, Pozidis H, Eleftheriou E, Lam C H 2016 IEEE J. Emerg. Sel. Topics Circuits Syst. 6 146Google Scholar

    [5]

    Wang C Z, Zhang D M, Zhang K L, Zeng L, Wang Y, Hou Z Y, Zhang Y G, Zhao W S 2020 IEEE Trans. Magn. 67 1965Google Scholar

    [6]

    Ryu J W, Kwon K W 2016 IEEE Trans. Magn. 52 1Google Scholar

    [7]

    Prajapati S, Kaushik B K 2018 IEEE Trans. Magn. 55 1Google Scholar

    [8]

    Lee D G, Park S G 2017 IEEE Trans. Magn. 53 1Google Scholar

    [9]

    Khalili A P, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Wang K L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [10]

    Zhang X L, Wang C J, Liu Y W, Zhang Z Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719Google Scholar

    [11]

    Miriyala V P K, Fong X, Liang G 2019 IEEE Trans. Electron Devices. 66 944Google Scholar

    [12]

    Long M, Zeng L, Gao T, Zhang D, Qin X, Zhang Y, Zhao W 2018 IEEE Trans. Nanotechnol. 17 492Google Scholar

    [13]

    Song J, Ahmed I, Zhao Z, Zhang D, Sapatnekar S S, Wang J P, Kim C H 2018 IEEE J. Explor. Solid-State Computat. Dev. Circ. 4 76Google Scholar

    [14]

    Cao K, Li H, Cai W, Wei J, Wang L, Hu Y, Jiang Q, Cui H, Zhao C, Zhao W 2019 IEEE Trans. Magn. 55 1Google Scholar

    [15]

    Jaiswal A, Agrawal A, Roy K 2018 Sci. Rep. 8 1Google Scholar

    [16]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 5Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 5Google Scholar

    [17]

    Kang W, Ran Y, Zhang Y, Lü W, Zhao W 2017 IEEE Trans. Nanotechnol. 16 387Google Scholar

    [18]

    Lee H, Lee A, Wang S, Ebrahimi F, Gupta P, Amiri P K, Wang K L 2018 IEEE Trans. Magn. 54 1Google Scholar

    [19]

    Alzate J G, Amiri P K, Upadhyaya P, Cherepov S S, Zhu J, Lewis M, Dorrance R, Katine J A, Langer J, Galatsis K 2012 2012 International Electron Devices Meeting San Francisco, US, December 10–13, 2012 p51

    [20]

    Niranjan M K, Duan C G, Jaswal S S, Tsymbal E Y 2010 Appl. Phys. Lett. 96 222504Google Scholar

    [21]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [22]

    Ahmed R, Victora R H 2018 Appl. Phys. Lett. 112 182401Google Scholar

    [23]

    Alzate Vinasco J G 2014 Ph. D. Dissertation (California: University of California, Los Angeles

    [24]

    Tsunekawa K, Nagamine Y, Maehara H, Djayaprawira D D, Watanabe N 2007 2006 IEEE International Magnetics Conference San Diego, US, May 8–12, 2006 p855

    [25]

    Rata A D, Braak H, Bürgler D E, Schneider C M 2007 Appl. Phys. Lett. 90 162512Google Scholar

    [26]

    Zhao W, Zhao X, Zhang B, Cao K, Wang L, Kang W, Shi Q, Wang M, Zhang Y, Wang Y 2016 Materials 9 41Google Scholar

    [27]

    Wang Y, Cai H, Naviner L A B, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [28]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721Google Scholar

    [29]

    Chen E, Schwarz B, Choi C J, Kula W, Wolfman J, Ounadjela K, Geha S 2003 J. Appl. Phys. 93 8379Google Scholar

    [30]

    Ohsawa Y, Shimomura N, Daibou T, Kamiguchi Y, Shirotori S, Inokuchi T, Saida D, Altansargai B, Kato Y, Yoda H 2016 IEEE Trans. Magn. 52 1Google Scholar

    [31]

    Ip V, Huang S, Carnevale S D, Berry I L, Rook K, Lill T B, Paranjpe A P, Cerio F 2017 IEEE Trans. Magn. 53 1Google Scholar

    [32]

    Sugiura K, Takahashi S, Amano M, Kajiyama T, Iwayama M, Asao Y, Shimomura N, Kishi T, Ikegawa S, Yoda H 2009 Jpn. J. Appl. Phys. 48 08HD02Google Scholar

    [33]

    Takahashi S, Kai T, Shimomura N, Ueda T, Amano M, Yoshikawa M, Kitagawa E, Asao Y, Ikegawa S, Kishi T 2006 IEEE Trans. Magn. 42 2745Google Scholar

    [34]

    Xue L, Nistor L, Ahn J, Germain J, Ching C, Balseanu M, Trinh C, Chen H, Hassan S, Pakala M 2014 IEEE Trans. Magn. 50 1Google Scholar

    [35]

    Wang Y, Zhang Y, Deng E Y, Klein J O, Naviner L A B, Zhao W S 2014 Microelectron. Reliab. 54 1774Google Scholar

    [36]

    Aggarwal S, Almasi H, DeHerrera M, Hughes B, Ikegawa S, Janesky J, Lee H K, Lu H, Mancoff F B, Nagel K, Shimon G, Sun J J, Andre T, Alam S M 2019 2019 IEEE International Electron Devices Meeting (IEDM) San Francisco, USA, December 7–11, 2019 p18

    [37]

    Li J, Augustine C, Salahuddin S, Roy K 2008 Proceedings of the 45th annual Design Automation Conference New York, USA, June, 2008 p278

  • [1] Ren Yan-Ying, Li Ya-Ning, Liu Hong-Sheng, Xu Nan, Guo Kun, Xu Zhao-Hui, Chen Xin, Gao Jun-Feng. Regulation of magnetic moment and magnetic anisotropy of magnetite by doping transition metal elements. Acta Physica Sinica, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] Wang Ke-Xin, Su Li, Tong Liang-Le. Analysis of spin-orbit torque magnetic tunnel junction model without external magnetic field assistance based on antiferromagnetism. Acta Physica Sinica, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [3] Liu Nan-Shu, Wang Cong, Ji Wei. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [4] Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong. Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application. Acta Physica Sinica, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [5] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [6] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [7] Tang Hua-Lian, Xu Bei-Lei, Zhuang Yi-Qi, Zhang Li, Li Cong. Distribution characteristic of p-channel metal-oxide-semiconductor negative bias temperature instability effect under process variations. Acta Physica Sinica, 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [8] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [9] Chen Xi, Liu Hou-Fang, Han Xiu-Feng, Ji Yang. The research of the perpendicular magnetic anisotropy in CoFeB/AlOx/Ta and AlOx/CoFeB/Ta structures. Acta Physica Sinica, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [10] Liu Na, Wang Hai, Zhu Tao. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Physica Sinica, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [11] Gu Wen-Juan, Pan Jing, Du Wei, Hu Jing-Guo. Measurement of magnetic anisotropyby ferromagnetic resonance. Acta Physica Sinica, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [12] Yan Jing, Qi Xian-Jin, Wang Yin-Gang. Influence of annealing on thermal stability of IrMn-based magnetic tunnel juctions. Acta Physica Sinica, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [13] Wang Yong, Zhang Ze, Zeng Zhong-Ming, Han Xiu-Feng. Electron holography investigation of the barrier of magnetic tunnelling junctions. Acta Physica Sinica, 2006, 55(3): 1148-1152. doi: 10.7498/aps.55.1148
    [14] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [15] GUAN PENG, LIU YI-HUA. A NEW MODEL FOR INDUCED ANISOTROPY IN AMORPHOUS ALLOYS. Acta Physica Sinica, 1989, 38(7): 1182-1186. doi: 10.7498/aps.38.1182
    [16] LI YI-BING, LI SHAO-PING. MAGNETO-EXCHANGE MODES IN ANISOTROPIC MEDIA. Acta Physica Sinica, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [17] ZENG XUN-YI, LU XIAO-JIA, WANG YA-QI. THE ORIGIN OF GROWTH-INDUCED MAGNETIC ANISOTROPY IN YIG. Acta Physica Sinica, 1989, 38(11): 1891-1895. doi: 10.7498/aps.38.1891
    [18] CUI GUANG-JI, MENG XIAO-FAN, SHAO KAI. MAGNETIC COUPLING BETWEEN THE RESONANT JOSEPHSON TUNNEL JUNCTION AND THE APLLIED MICROWAVE (Ⅰ). Acta Physica Sinica, 1982, 31(12): 1-7. doi: 10.7498/aps.31.1-2
    [19] CUI GUANG-JI, MENG XIAO-FAN, SHAO KAI. MAGNETIC COUPLING BETWEEN THE RESONANT JOSEPHSON TUNNEL JUNCTION AND THE APLLIED MICROWAVE (Ⅱ). Acta Physica Sinica, 1982, 31(12): 8-12. doi: 10.7498/aps.31.8
    [20] HSIANC JEN-SHENG. ON THE PARAMAGNETIC ANISOTROPY OF SINGLE CRYSTALS OF CHROME ALUMS. Acta Physica Sinica, 1957, 13(3): 177-180. doi: 10.7498/aps.13.177
Metrics
  • Abstract views:  6580
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2020
  • Accepted Date:  09 May 2020
  • Available Online:  13 June 2020
  • Published Online:  05 October 2020

/

返回文章
返回