Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetopolaron-state lifetime and qubit decoherence in donor-center quantum dots with the electromagnetic field

Bai Xu-Fang Chen Lei

Citation:

Magnetopolaron-state lifetime and qubit decoherence in donor-center quantum dots with the electromagnetic field

Bai Xu-Fang, Chen Lei,
PDF
HTML
Get Citation
  • Recently, the measurement scheme of quantum dot qubit decocoherence quantized by the longitudinal optical (LO) phonon spontaneous emission rate has attracted the attention and discussion of many researchers. However, it is not difficult to see that the above-mentioned measurement scheme still has some insufficient and imperfect aspects that are to be studied urgently. Considering from the physical mechanism, the essence of the above scheme is to quantify the decoherence time of qubit by using the excited state decay time or excited state lifetime of the polaron. However, so far, there is little research on how the ground state decay time and ground state lifetime of two-state polaron affect the coherence of qubit. There is no doubt that this is an equally important research topic. This is because, firstly, for the coherence of the quantum state of polaron, both the decay of the excited state and the decay of the ground state will destroy or attenuate the qubit coherence, secondly, the transition rate of the two-state polaron from the ground state to the excited state after absorbing an LO phonon is also a function quantifying the qubit decoherence time of two-state system of which the inverse is called the ground state decay time or the ground state lifetime. It may be called a measure of qubit decoherence time quantized by the ground state decay time or ground state lifetime of polaron. In this article, the ground-state and excited-state energy and wave function of the magnetopolaron in a donor-center quantum dot with asymmetric Gaussian potential are derived by Lee-Low-Pines transformation and Pekar-type variational methodd, and then the two-level structure for a qubit is constructed. The measure of qubit decoherence time of quantum dots quantified by ground state decay time of two-state polaron is established, which is compared with the well-known measure of qubit decoherence time of quantum dots quantified by polaron excited state decay time, and their physical mechanisms are revealed. By studying the influence of dielectric constant ratio, electro-phonons coupling constant, temperature and electromagnetic field on the ground state lifetime of magnetopolaron in the donor-center quantum dots with asymmetric Gaussian potential, the influences of material properties, temperature, electromagnetic field and other environmental factors on qubit decoherence of quantum dots are revealed, thereby revealing the mechanism of qubit decoherence caused by LO phonon effect.
      Corresponding author: Chen Lei, eedcl2603@hevttc.edu.cn
    [1]

    Tiotsop M, Fotue A J, Talla P K, Kenfack S C, Fautso K G, Fotsin H, Fai L C 2018 Iran. J. Sci. Technol. A 42 933Google Scholar

    [2]

    Lang Z H, Cai C U, Xiao J L 2019 Int. J. Theor. Phys. 58 2320Google Scholar

    [3]

    Jordan K, Stephen J P 2005 Phys. Rev. B 71 125332Google Scholar

    [4]

    Liang Z H, Xiao J L 2018 Indian J. Phys. 92 437Google Scholar

    [5]

    Chi F, Li S S 2006 J. Appl. Phys. 99 043705Google Scholar

    [6]

    Li S S, Xia J B, Yang F H, Niu Z C, Feng S L, Zheng H Z 2001 J. Appl. Phys. 90 6151Google Scholar

    [7]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180Google Scholar

    [8]

    Varwig S, René A, Greilich A, Yakovlev D R, Reuter D, Wieck A D, Bayer B 2013 Phys. Rev. B 87 115307Google Scholar

    [9]

    Sun Y, Xiao J L 2019 Opt. Quantum Electron. 51 110Google Scholar

    [10]

    Xiao J L 2019 J. Low Temp. Phys. 195 442Google Scholar

    [11]

    Ma X J, Xiao J L 2018 Opt. Quantum Electron. 50 144Google Scholar

    [12]

    Xiao J L 2018 J. Low Temp. Phys. 192 41Google Scholar

    [13]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [14]

    Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120Google Scholar

    [15]

    Rana S, Parashar P, Lewenstein M 2016 Phys. Rev. A 93 012110Google Scholar

    [16]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [17]

    Ma J J, Yadin B, Girolami D, Vedral V, Gu M 2016 Phys. Rev. Lett. 116 160407Google Scholar

    [18]

    Davide G 2014 Phys. Rev. Lett. 113 170401Google Scholar

    [19]

    Pires D P, Céleri L C, Soares-Pinto D O 2015 Phys. Rev. A 91 042330Google Scholar

    [20]

    Fotue A J, Fobasso M F C, Kenfack S C, Tiotsop M, Djomou J R D, Ekosso C M, Nguimeya G P, Danga J E, Keumo Tsiaze R M, Fai L C 2016 Eur. Phys. J. Plus 131 205Google Scholar

    [21]

    Xiao W, Xiao J L 2016 Int. J. Theor. Phys. 55 2936Google Scholar

    [22]

    Sun Y, Ding Z H, Xiao J L 2014 J. Low Temp. Phys. 177 151Google Scholar

    [23]

    Sun Y, Ding Z H, Xiao J L 2017 J. Electron. Mater. 46 439Google Scholar

    [24]

    Bai X F, Xin W, Eerdunchaolu 2019 Int. J. Mod. Phys. B 33 1950322Google Scholar

    [25]

    乌云其木格, 韩超, 额尔敦朝鲁 2019 物理学报 68 247803Google Scholar

    Wuyunqimuge, Han C, Eerdunchaolu 2019 Acta Phys. Sin. 68 247803Google Scholar

    [26]

    Boucaud P, Sauvage S, Bras F, Fishman G, Ortéga J M, Gérard J M 2005 Physica E 26 59Google Scholar

    [27]

    AZibik E, Wilson L R, Green R P, Wells J P R, Phillips P J, Carder D A, Cockburn J W, Skolnick M S, Steer M J, Liu H Y, Hopkinson M 2004 Physica E 21 405Google Scholar

    [28]

    Verzelen O, Ferreira R, Bastard G 2002 Physica E 13 309Google Scholar

    [29]

    Yu Y F, Xiao J L, Yin J W, Wang Z W 2008 Chin. Phys. B 17 2236Google Scholar

    [30]

    Khordad R, Goudarzi S, Bahramiyan H 2016 Indian J. Phys. 90 659Google Scholar

    [31]

    Li Z X 2019 Indian J. Phys. 93 707Google Scholar

    [32]

    Lee T D 1953 Phys. Rev. 90 297Google Scholar

    [33]

    Landau L D, Pekar S I 1948 Zh. Eksp. Teor. Fiz. 18 419

    [34]

    Brummell M A, Nicholas R J, Hopkins M A, Harris J J, Foxon C T 1987 Phys. Rev. Lett. 58 77Google Scholar

    [35]

    Bai X F, Xin W, Yin H W, Eerdunchaolu 2017 J. Korean Phys. Soc. 70 956Google Scholar

  • 图 1  非对称高斯势曲线

    Figure 1.  Asymmetric Gaussian (AG) potential curve.

    图 2  LO声子平均数${N_0}$在不同电声耦合常数$\alpha $下随温度参数$\gamma $的变化

    Figure 2.  Mean number ${N_0}$ of LO phonons as a function of the temperature parameter $\gamma $ at different electron-phonon coupling (EPC) constant $\alpha $.

    图 14  磁极化子基态寿命${\tau _0}$在不同电场强度$F$下随抛物势范围${R_0}$的变化

    Figure 14.  The ground-state lifetime ${\tau _0}$ as a function of the range ${R_0}$ of the parabolic potential at different electric field $F$.

    图 3  磁极化子基态能量${E_0}$及其各组成部分随高斯势阱宽$L$的变化

    Figure 3.  Ground state energy ${E_0}$ of the magnetopolaron and its components versus the well width $L$ of the AG potential.

    图 4  能隙$\Delta E$在非对称高斯势不同阱深${V_0}$下随其阱宽$L$的变化

    Figure 4.  Energy gap $\Delta E$ as a function of the well width $L$ at different well depth ${V_0}$ of the AG potential.

    图 5  能隙$\Delta E$在不同介电常数比$\eta $下随高斯势阱宽$L$的变化

    Figure 5.  Energy gap $\Delta E$ versus the well width $L$ of the AG potential under different dielectric constant (DC) ratio $\eta $.

    图 6  能隙$\Delta E$在不同电声耦合常数$\alpha $下随高斯势阱深${V_0}$的变化

    Figure 6.  Energy gap $\Delta E$ as a function of the well depth ${V_0}$ of the AG potential at different EPC constant $\alpha $.

    图 7  能隙$\Delta E$在不同电场强度$F$下随高斯势阱深${V_0}$的变化

    Figure 7.  Energy gap $\Delta E$ versus the well depth ${V_0}$ of the AG potential under different electric field $F$.

    图 8  能隙$\Delta E$在不同磁场的回旋频率${\omega _{\rm{c}}}$下随抛物势范围${R_0}$的变化

    Figure 8.  Energy gap $\Delta E$ as a function of the range ${R_0}$ of the parabolic potential at different magnetic-field cyclotron (MFC) frequency ${\omega _{\rm{c}}}$.

    图 9  磁极化子基态寿命${\tau _0}$在高斯势不同阱深${V_0}$下随其阱宽$L$的变化

    Figure 9.  The ground-state lifetime ${\tau _0}$ of the magntopolaron as a function of the well width $L$ at different well depth ${V_0}$ of the AG potential.

    图 10  基态寿命${\tau _0}$在不同电声耦合常数$\alpha $下随高斯势阱宽$L$的变化

    Figure 10.  The ground-state lifetime ${\tau _0}$ as a function of the well width $L$ of the AG potential at different EPC constant $\alpha $.

    图 11  基态寿命${\tau _0}$在不同温度参数$\gamma $下随高斯势阱宽$L$的变化

    Figure 11.  The ground-state lifetime ${\tau _0}$ as a function of the well width $L$ of the AG potential at different temperature parameter $\gamma $.

    图 12  基态寿命${\tau _0}$在不同介电常数比$\eta $下随抛物势范围${R_0}$的变化

    Figure 12.  The ground-state lifetime ${\tau _0}$ as a function of the range ${R_0}$ of the parabolic potential at different DC ratio $\eta $

    图 13  基态寿命${\tau _0}$在磁场的不同回旋频率${\omega _{\rm{c}}}$下随高斯势阱深${V_0}$的变化

    Figure 13.  The ground-state lifetime ${\tau _0}$ versus the well depth ${V_0}$ of the AG potential under different MFC frequencies ${\omega _{\rm{c}}}$

  • [1]

    Tiotsop M, Fotue A J, Talla P K, Kenfack S C, Fautso K G, Fotsin H, Fai L C 2018 Iran. J. Sci. Technol. A 42 933Google Scholar

    [2]

    Lang Z H, Cai C U, Xiao J L 2019 Int. J. Theor. Phys. 58 2320Google Scholar

    [3]

    Jordan K, Stephen J P 2005 Phys. Rev. B 71 125332Google Scholar

    [4]

    Liang Z H, Xiao J L 2018 Indian J. Phys. 92 437Google Scholar

    [5]

    Chi F, Li S S 2006 J. Appl. Phys. 99 043705Google Scholar

    [6]

    Li S S, Xia J B, Yang F H, Niu Z C, Feng S L, Zheng H Z 2001 J. Appl. Phys. 90 6151Google Scholar

    [7]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180Google Scholar

    [8]

    Varwig S, René A, Greilich A, Yakovlev D R, Reuter D, Wieck A D, Bayer B 2013 Phys. Rev. B 87 115307Google Scholar

    [9]

    Sun Y, Xiao J L 2019 Opt. Quantum Electron. 51 110Google Scholar

    [10]

    Xiao J L 2019 J. Low Temp. Phys. 195 442Google Scholar

    [11]

    Ma X J, Xiao J L 2018 Opt. Quantum Electron. 50 144Google Scholar

    [12]

    Xiao J L 2018 J. Low Temp. Phys. 192 41Google Scholar

    [13]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [14]

    Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120Google Scholar

    [15]

    Rana S, Parashar P, Lewenstein M 2016 Phys. Rev. A 93 012110Google Scholar

    [16]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [17]

    Ma J J, Yadin B, Girolami D, Vedral V, Gu M 2016 Phys. Rev. Lett. 116 160407Google Scholar

    [18]

    Davide G 2014 Phys. Rev. Lett. 113 170401Google Scholar

    [19]

    Pires D P, Céleri L C, Soares-Pinto D O 2015 Phys. Rev. A 91 042330Google Scholar

    [20]

    Fotue A J, Fobasso M F C, Kenfack S C, Tiotsop M, Djomou J R D, Ekosso C M, Nguimeya G P, Danga J E, Keumo Tsiaze R M, Fai L C 2016 Eur. Phys. J. Plus 131 205Google Scholar

    [21]

    Xiao W, Xiao J L 2016 Int. J. Theor. Phys. 55 2936Google Scholar

    [22]

    Sun Y, Ding Z H, Xiao J L 2014 J. Low Temp. Phys. 177 151Google Scholar

    [23]

    Sun Y, Ding Z H, Xiao J L 2017 J. Electron. Mater. 46 439Google Scholar

    [24]

    Bai X F, Xin W, Eerdunchaolu 2019 Int. J. Mod. Phys. B 33 1950322Google Scholar

    [25]

    乌云其木格, 韩超, 额尔敦朝鲁 2019 物理学报 68 247803Google Scholar

    Wuyunqimuge, Han C, Eerdunchaolu 2019 Acta Phys. Sin. 68 247803Google Scholar

    [26]

    Boucaud P, Sauvage S, Bras F, Fishman G, Ortéga J M, Gérard J M 2005 Physica E 26 59Google Scholar

    [27]

    AZibik E, Wilson L R, Green R P, Wells J P R, Phillips P J, Carder D A, Cockburn J W, Skolnick M S, Steer M J, Liu H Y, Hopkinson M 2004 Physica E 21 405Google Scholar

    [28]

    Verzelen O, Ferreira R, Bastard G 2002 Physica E 13 309Google Scholar

    [29]

    Yu Y F, Xiao J L, Yin J W, Wang Z W 2008 Chin. Phys. B 17 2236Google Scholar

    [30]

    Khordad R, Goudarzi S, Bahramiyan H 2016 Indian J. Phys. 90 659Google Scholar

    [31]

    Li Z X 2019 Indian J. Phys. 93 707Google Scholar

    [32]

    Lee T D 1953 Phys. Rev. 90 297Google Scholar

    [33]

    Landau L D, Pekar S I 1948 Zh. Eksp. Teor. Fiz. 18 419

    [34]

    Brummell M A, Nicholas R J, Hopkins M A, Harris J J, Foxon C T 1987 Phys. Rev. Lett. 58 77Google Scholar

    [35]

    Bai X F, Xin W, Yin H W, Eerdunchaolu 2017 J. Korean Phys. Soc. 70 956Google Scholar

Metrics
  • Abstract views:  4868
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  19 February 2020
  • Accepted Date:  22 April 2020
  • Available Online:  09 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回