Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of information metamaterials

Cui Tie-Jun Wu Hao-Tian Liu Shuo

Citation:

Research progress of information metamaterials

Cui Tie-Jun, Wu Hao-Tian, Liu Shuo
PDF
HTML
Get Citation
  • Metamaterials are artificial structures composed of subwavelength unit cells in periodic or non-periodic arrays, which are regarded as one of the most important tops in today’s physics and information engineering. Traditional metamaterials are characterized by effective medium theory, in which the array of differently-shaped subwavelength particles can be described as an effective medium with effective permittivity and permeability. The metamaterials allow us to engineer the medium parameters with unusual values, such as negative permittivity and permeability, zero index of refraction, etc. In 2014, Cui et al. (Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218) proposed the concept of information metamaterial, which is a digital version of the metamaterial with each unit cell described by digital codes representing different reflection/refraction phases. The direct connection between information metamaterials and digital logic devices allows the dynamic controlling of the electromagnetic (EM) waves by real-time programming the digital states of each unit cell in the information metamaterials with preloaded digital coding sequences. As information metamaterials build up a digital world (digital coding information) directly in the physical world, digital information can be processed on the information metamaterials directly without any intermediate conversion process, thus realizing the unification of microwave engineering and digital processing.In this paper, we review the recent developments of digital coding metamaterials, programmable metamaterials, and information metamaterials, mainly focusing on their basic concepts, working mechanisms, experimental realizations, and system-level applications. Firstly, we introduce the concepts of digital coding and programmable metamaterials and present their advantages to realize the dynamic controlling of EM waves at low cost. The working mechanisms of isotropic, anisotropic, and tensor digital coding metamaterials are described, following the first prototype of the programmable metamaterial. Then we introduce the concept of information entropy for the information metamaterial and reveal the connection between the amount of information carried by the coding pattern and the radiated field of the information metamaterial. Convolution operation and addition theorem are further presented to show their powerful manipulations of EM wave in generating arbitrary beam patterns pointing to arbitrary directions. Finally, we introduce three representative system-level applications of information metamaterials, including a reprogrammable hologram imaging system which can dynamically project different microwave images at the imaging plane through the preloaded coding sequences stored in field programmable gate array (FPGA), a machine-learning reprogrammable metasurface imager that can be trained in-situ to produce high-quality images and high-accuracy object recognition in the real case at low cost, and directly digital wireless communication systems, in which the digital information is directly processed and radiated to free space by using the information metamaterial and FPGA. The information metamaterials are currently advancing towards higher frequencies (millimeter waves, terahertz, and infrared) to have higher capacity of information, and are becoming more “intelligent” with the combination of many advanced algorithms in computer science. We believe that the future information metamaterials possess signatures of self-sensing, self-learning, self-adaptive, and self-decision.
      Corresponding author: Cui Tie-Jun, tjcui@seu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0700201, 2017YFA0700202, 2017YFA0700203)
    [1]

    Veselago V G 1968 Sov. Phys. Uspekhi. 10 509Google Scholar

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [3]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [4]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar

    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [6]

    Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609Google Scholar

    [7]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [8]

    Shin H, Fan S H 2006 Phys. Rev. Lett. 96 239903Google Scholar

    [9]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [10]

    Liu R P, Cui T J, Huang D, Zhao B, Smith D R 2007 Phys. Rev. E 76 026606Google Scholar

    [11]

    Magnus F, Wood B, Moore J, Morrison K, Perkins G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, Pendry J B 2008 Nat. Mater. 7 295Google Scholar

    [12]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901Google Scholar

    [13]

    Cui T J, Smith D R, Liu R P 2009 Metamaterials: Theory, Design, and Applications (New York: Springer Science & Business Media)

    [14]

    Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R, Smith D R 2008 Appl. Phys. Lett. 92 264101Google Scholar

    [15]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867Google Scholar

    [16]

    Cheng Q, Cui T J, Jiang W X, Cai B G 2010 New J. Phys. 12 063006Google Scholar

    [17]

    Cheng Q, Jiang W X, Cui T J 2012 Phys. Rev. Lett. 108 213903Google Scholar

    [18]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [19]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403Google Scholar

    [20]

    Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903Google Scholar

    [21]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366Google Scholar

    [22]

    Ma H F, Cui T J 2010 Nat. Commun. 1 21Google Scholar

    [23]

    Ma H F, Cui T J 2010 Nat. Commun. 1 124Google Scholar

    [24]

    Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932Google Scholar

    [25]

    Chen X Z, Huang L L, Mühlenbernd H, Li G X, Bai B F, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nat. Commun. 3 1198Google Scholar

    [26]

    Wang Q, Zhang X, Xu Y, Tian Z, Gu J, Yue W, Zhang S, Han J, Zhang W 2015 Adv. Opt. Mater. 3 779Google Scholar

    [27]

    Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X 2010 Nat. Commun. 1 143Google Scholar

    [28]

    Jiang W X, Qiu C W, Han T C, Cheng Q, Ma H F, Zhang S, Cui T J 2013 Adv. Mater. 25 6963Google Scholar

    [29]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702Google Scholar

    [30]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [31]

    Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [32]

    Ni X J, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [33]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I, Liao Y C, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano. Lett. 14 225Google Scholar

    [34]

    Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S, Chen X 2015 Nat. Commun. 6 8241Google Scholar

    [35]

    Huang L, Mühlenbernd H, Li X, Song X, Bai B, Wang Y, Zentgraf T 2015 Adv. Mater. 27 6444Google Scholar

    [36]

    Ye W, Zeuner F, Li X, Reineke B, He S, Qiu C W, Liu J, Wang Y, Zhang S, Zentgraf T 2016 Nat. Commun. 7 11930Google Scholar

    [37]

    Sun S L, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [38]

    Li G, Kang M, Chen S, Zhang S, Pun E Y B, Cheah K W, Li J 2013 Nano Lett. 13 4148Google Scholar

    [39]

    Karimi E, Schulz S A, Leon I, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 e167Google Scholar

    [40]

    Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876Google Scholar

    [41]

    Mehmood M Q, Mei S, Hussain S, Huang K, Siew S Y, Zhang L, Zhang T, Ling X, Liu H, Teng J, Danner A, Zhang S, Qiu C W 2016 Adv. Mater. 28 2533Google Scholar

    [42]

    Berry M V 1987 J. Mod. Opt. 34 1401Google Scholar

    [43]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar

    [44]

    Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, Lustrac A, Wu Q, Qiu C W, Alu A 2015 Adv. Mater. 27 1195Google Scholar

    [45]

    Tymchenko M, Gomez D J S, Lee J, Nookala N, Belkin M A, Alu A 2015 Phys. Rev. Lett. 115 207403Google Scholar

    [46]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [47]

    Zhao Y, Belkin M A, Alu A 2012 Nat. Commun. 3 870Google Scholar

    [48]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401Google Scholar

    [49]

    Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M, Grbic A 2014 Nano Lett. 14 2491Google Scholar

    [50]

    Jia S L, Wan X, Bao D, Zhao Y J, Cui T J 2015 Laser Photonics Rev. 9 545Google Scholar

    [51]

    Della G C, Engheta N 2014 Nat. Mater. 13 1115Google Scholar

    [52]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218Google Scholar

    [53]

    Xie B, Tang K, Cheng H, Liu Z, Chen S, Tian J 2017 Adv. Mater. 29 1603507Google Scholar

    [54]

    Wang Z, Zhang Q, Zhang K, Hu G 2016 Adv. Mater. 28 9857Google Scholar

    [55]

    Gao L H, Cheng Q, Yang J, et al. 2015 Light-Sci. Appl. 4 e324Google Scholar

    [56]

    Ma Q, Shi C B, Bai G D, Chen T Y, Noor A, Cui T J 2017 Adv. Opt. Mater. 5 1700548Google Scholar

    [57]

    Zhang L, Liu S, Li L, Cui T J 2017 ACS Appl. Mater. Inter. 9 36447Google Scholar

    [58]

    Liu S, Cui T J, Xu Q, et al. 2016 Light-Sci. Appl. 5 e16076Google Scholar

    [59]

    Liu S, Zhang H C, Zhang L, et al. 2017 ACS Appl. Mater. Inter. 9 21503Google Scholar

    [60]

    Wan X, Qi M Q, Chen T Y, Cui T J 2016 Sci. Rep. 6 20663Google Scholar

    [61]

    Cui T J, Liu S, Zhang L 2017 J. Mater. Chem. C 5 3644Google Scholar

    [62]

    Cui T J, Liu S, Li L 2016 Light-Sci. Appl. 5 e16172Google Scholar

    [63]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156Google Scholar

    [64]

    Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236Google Scholar

    [65]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [66]

    Li Y B, Li L L, Xu B B, Wu W, Wu R Y, Wan X, Cheng Q Cui T J 2016 Sci. Rep. 6 23731Google Scholar

    [67]

    Li L, Hurtado M, Xu F, Zhang B C, Jin T, Cui T J, Stevanovic M N, Nehorai A 2018 Found. Trends Signal Process. 12 107Google Scholar

    [68]

    Li L L, Ruan H X, Liu C, Li Y, Shuang Y, Alu A, Qiu C W, Cui T J 2019 Nat. Commun. 10 1082Google Scholar

    [69]

    Cui T J, Liu S, Bai G D, Ma Q 2019 Research 2019 2584509Google Scholar

    [70]

    Wan X, Zhang Q, Chen T Y, Zhang L, Xu W, He H, Xiao C K, Xiao Q, Cui T J 2019 Light-Sci. Appl. 8 60Google Scholar

    [71]

    Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alu A, Cui T J 2019 Nat. Sci. Rev. 6 231Google Scholar

    [72]

    Dai J Y, Zhao J, Cheng Q, Cui T J 2018 Light-Sci. Appl. 7 90Google Scholar

    [73]

    Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S, Cui T J 2019 Adv. Mater. Tech. 4 1900044Google Scholar

    [74]

    Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, Wong K K, Cui T J 2019 Electron. Lett. 55 417Google Scholar

    [75]

    Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, Wong K K, Cui T J 2019 Electron. Lett. 55 360Google Scholar

    [76]

    Dai J Y, Tang W, Yang L X, Li X, Chen M Z, Ke J C, Cheng Q, Jin S, Cui T J 2019 IEEE. T. Antenn. Propag. 6 7Google Scholar

    [77]

    Tang W, Li X, Dai J Y, Jin S, Zeng Y, Cheng Q, Cui T J 2019 China Commun. 16 46

    [78]

    Basar E, Renzo M D, Rosny J D, Debbah M, Alouini M, Zhang R 2019 IEEE Access 7 116753Google Scholar

    [79]

    Tang W, Chen M Z, Chen X, Dai J Y, Han Y, Renzo M D, Zeng Y, Jin S, Cheng Q, Cui T J 2020 IEEE Trans. Wirel. Commun. arxiv: 1911.05326

    [80]

    Tang W, Chen M Z, Dai J Y, Zeng Y, Zhao X, Jin S, Cheng Q, Cui T J 2019 IEEE Trans. Wirel. Commun. 27 180Google Scholar

    [81]

    Bao L, Ma Q, Bai G D, Jing H B, Wu R Y, Yang C, Wu J, Fu X, Cui T J 2018 Appl. Phys. Lett. 113 063502Google Scholar

    [82]

    Luo J, Ma Q, Jing H B, Bai G D, Wu R Y, Bao L, Cui T J 2019 J. App. Phys. 126 113102Google Scholar

    [83]

    Zhang L, Chen X Q, Liu S, et al. 2018 Nat. Commun. 9 4334Google Scholar

    [84]

    Zhang L, Chen X Q, Shao R W, Dai J Y, Cheng Q, Castaldi G, Galdi V, Cui T J 2019 Adv. Mater. 31 1904069Google Scholar

    [85]

    Chen L, Ma Q, Jing H B, Cui H Y, Liu Y, Cui T J 2019 Phys. Rev. Appl. 11 054051Google Scholar

    [86]

    Luo Z, Chen M Z, Wang Z X, Zhou L, Wang Q, Li Y B, Cheng Q, Ma H F, Cui T J 2019 Adv. Funct. Mater. 29 1906635Google Scholar

    [87]

    Luo Z J, Wang Q, Zhang X G, et al. 2019 Adv. Opt. Mater. 7 1900792Google Scholar

    [88]

    Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028Google Scholar

    [89]

    Wang Q, Zhang X G, Tian H W, et al. 2019 Adv. Theory Simul. 2 1900141Google Scholar

    [90]

    Zhang X G, Jiang W X, Jiang H L, et al. 2020 Nat. Electron. 3 165Google Scholar

    [91]

    Ma Q, Bai G D, Jing H B, Yang C, Li L, Cui T J 2019 Light-Sci. Appl. 8 98Google Scholar

    [92]

    Li L, Shuang Y, Ma Q, Li H, Zhao H, Wei M, Liu C, Hao C, Qiu C W, Cui T J 2019 Light-Sci. Appl. 8 97Google Scholar

    [93]

    Li H Y, Zhao H T, Wei M L, Ruan H X, Shuang Y, Cui T J, Li L 2020 Patterns 1 100006Google Scholar

    [94]

    Cui T J 2017 J. Opt. 19 084004Google Scholar

    [95]

    Cui T J 2018 Nat. Sci. Rev. 5 134Google Scholar

  • 图 1  等效媒质超材料的数字化[51] (a) 等效媒质超材料的离散化和数字化过程; (b) 给定介电常数函数的取样和离散化, 并用两个超材料单元来设计

    Figure 1.  Digitization of effective-medium metamaterial[51]: (a) Discretizing and digitizing processes of effective-medium metamaterial; (b) sampling, discretizing, and digitizing a required permittivity function using two metamaterial bits as building blocks.

    图 2  超材料的数字编码表征及数字编码超材料[52] (a) 数字编码超材料; (b) 数字0和1单元的物理实现及其相位响应; (c), (d) 不同数字编码序列下的电磁响应, 展示出完全不同的功能

    Figure 2.  Digital coding representation of metamaterials[52]: (a) Digital coding metamaterial; (b) the physical implementations of digital units 0 and 1 and their phase responses; (c), (d) electromagnetic responses under different digital coding sequences, showing different functions.

    图 3  数字超材料与现场可编程超材料[52] (a) 动态可调的数字编码超单元; (b) 数字0和1状态下的相位响应; (c) FPGA驱动下的现场可编程超材料; (d) 不同编码序列下的可编程功能

    Figure 3.  Digital metamaterial and programmable metamaterial[52]: (a) An active digital meta-atom; (b) the phase responses of the active digital meta-atom under the 0 and 1 states; (c) a programmable metamaterial controlled by FPGA; (d) the measured programmable functions under different digital coding sequences.

    图 4  信息超材料的信息熵[62] (a) 随机0和1数字编码; (b), (c) 随机0和1数字编码超材料的远场方向图; (d) 数字编码序列由有序到无序时的几何信息熵和物理信息熵

    Figure 4.  Information entropy of information metamaterials [62]: (a) The random 0 and 1 coding pattern; (b), (c) the far-field radiation patterns of the random 0 and 1 digital coding metamaterial; (d) the geometric information entropy and physical information entropy of the digital coding sequences from order to disorder.

    图 5  基于信息超材料的数字卷积定理[63] (a)−(c) 三种不同的数字编码图案, 其中(a)与(b)相加得到(c); (d)−(f) 相应数字编码图案的远场方向图, 实现方向图搬移; (g)−(i) 类比于信号处理中的频谱搬移

    Figure 5.  Digital convolution theorem based on the information metamaterials[63]: (a)−(c) Three different digital coding patterns, where (c) is obtained by adding (a) and (b); (d)−(f) the far field patterns of the corresponding digital coding patterns, showing the shift property of radiation beam; (g)−(i) the spectrum shift property in the digital signal processing.

    图 6  基于1比特现场可编程超材料的可编程微波全息成像系统(FPGA控制不同的数字编码图案, 实时地产生不同的全息像)[65]

    Figure 6.  A reprogrammable microwave holographic imaging system based on 1-bit programmable metamaterial. Different binary holograms are controlled by FPGA to generate different holographic images[65].

    图 7  可编程实时微波成像系统[68] (a)机器学习成像系统可根据不同场景进行优化; (b)训练可编程成像系统示意图; (c) 2比特数字编码超材料及其对一个运动目标的实时成像示意图和测量结果

    Figure 7.  Real-time digital-metasurface imager[68]: (a) The machine-learning metasurface imager can be optimized for different kinds of scenes; (b) the illustration of training the reprogrammable imager; (c) the map of 2-bit coding digital metasurface, and the illustration of real-time imaging a moving person behind a wall, as well as measurement results.

    图 8  基于时间编码数字超材料的新架构QPSK无线通信系统, 可实时地传输视频信号, 其中右下图为测量的星座图[73]

    Figure 8.  Schematic description of the new-architecture QPSK wireless communication system based on the time-domain digital coding metasurface, which can transmit movies in real time[73].

    图 9  自适应超材料[91] (a) 自适应超材料的示意图; (b) 自适应超材料的闭环系统, 由现场可编程超材料、FPGA、传感器和自适应算法所组成

    Figure 9.  . The self-adaptive metamaterial[91]: (a) An illustrative example; (b) the closed-loop system of the self-adaptive metamaterial, which includes a programmable metamaterial, an FPGA, a sensor, and a microcontroller unit loaded with the fast feedback algorithm.

  • [1]

    Veselago V G 1968 Sov. Phys. Uspekhi. 10 509Google Scholar

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [3]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [4]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar

    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [6]

    Smith D R, Mock J J, Starr A F, Schurig D 2005 Phys. Rev. E 71 036609Google Scholar

    [7]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [8]

    Shin H, Fan S H 2006 Phys. Rev. Lett. 96 239903Google Scholar

    [9]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [10]

    Liu R P, Cui T J, Huang D, Zhao B, Smith D R 2007 Phys. Rev. E 76 026606Google Scholar

    [11]

    Magnus F, Wood B, Moore J, Morrison K, Perkins G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, Pendry J B 2008 Nat. Mater. 7 295Google Scholar

    [12]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901Google Scholar

    [13]

    Cui T J, Smith D R, Liu R P 2009 Metamaterials: Theory, Design, and Applications (New York: Springer Science & Business Media)

    [14]

    Jiang W X, Cui T J, Cheng Q, Chin J Y, Yang X M, Liu R, Smith D R 2008 Appl. Phys. Lett. 92 264101Google Scholar

    [15]

    Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867Google Scholar

    [16]

    Cheng Q, Cui T J, Jiang W X, Cai B G 2010 New J. Phys. 12 063006Google Scholar

    [17]

    Cheng Q, Jiang W X, Cui T J 2012 Phys. Rev. Lett. 108 213903Google Scholar

    [18]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [19]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403Google Scholar

    [20]

    Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903Google Scholar

    [21]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366Google Scholar

    [22]

    Ma H F, Cui T J 2010 Nat. Commun. 1 21Google Scholar

    [23]

    Ma H F, Cui T J 2010 Nat. Commun. 1 124Google Scholar

    [24]

    Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932Google Scholar

    [25]

    Chen X Z, Huang L L, Mühlenbernd H, Li G X, Bai B F, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nat. Commun. 3 1198Google Scholar

    [26]

    Wang Q, Zhang X, Xu Y, Tian Z, Gu J, Yue W, Zhang S, Han J, Zhang W 2015 Adv. Opt. Mater. 3 779Google Scholar

    [27]

    Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X 2010 Nat. Commun. 1 143Google Scholar

    [28]

    Jiang W X, Qiu C W, Han T C, Cheng Q, Ma H F, Zhang S, Cui T J 2013 Adv. Mater. 25 6963Google Scholar

    [29]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702Google Scholar

    [30]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [31]

    Zheng G X, Mühlenbernd H, Kenney M, Li G X, Zentgraf T, Zhang S 2015 Nat. Nanotechnol. 10 308Google Scholar

    [32]

    Ni X J, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807Google Scholar

    [33]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I, Liao Y C, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano. Lett. 14 225Google Scholar

    [34]

    Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S, Chen X 2015 Nat. Commun. 6 8241Google Scholar

    [35]

    Huang L, Mühlenbernd H, Li X, Song X, Bai B, Wang Y, Zentgraf T 2015 Adv. Mater. 27 6444Google Scholar

    [36]

    Ye W, Zeuner F, Li X, Reineke B, He S, Qiu C W, Liu J, Wang Y, Zhang S, Zentgraf T 2016 Nat. Commun. 7 11930Google Scholar

    [37]

    Sun S L, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [38]

    Li G, Kang M, Chen S, Zhang S, Pun E Y B, Cheah K W, Li J 2013 Nano Lett. 13 4148Google Scholar

    [39]

    Karimi E, Schulz S A, Leon I, Qassim H, Upham J, Boyd R W 2014 Light-Sci. Appl. 3 e167Google Scholar

    [40]

    Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876Google Scholar

    [41]

    Mehmood M Q, Mei S, Hussain S, Huang K, Siew S Y, Zhang L, Zhang T, Ling X, Liu H, Teng J, Danner A, Zhang S, Qiu C W 2016 Adv. Mater. 28 2533Google Scholar

    [42]

    Berry M V 1987 J. Mod. Opt. 34 1401Google Scholar

    [43]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar

    [44]

    Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, Lustrac A, Wu Q, Qiu C W, Alu A 2015 Adv. Mater. 27 1195Google Scholar

    [45]

    Tymchenko M, Gomez D J S, Lee J, Nookala N, Belkin M A, Alu A 2015 Phys. Rev. Lett. 115 207403Google Scholar

    [46]

    Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M 2009 Science 325 1513Google Scholar

    [47]

    Zhao Y, Belkin M A, Alu A 2012 Nat. Commun. 3 870Google Scholar

    [48]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401Google Scholar

    [49]

    Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M, Grbic A 2014 Nano Lett. 14 2491Google Scholar

    [50]

    Jia S L, Wan X, Bao D, Zhao Y J, Cui T J 2015 Laser Photonics Rev. 9 545Google Scholar

    [51]

    Della G C, Engheta N 2014 Nat. Mater. 13 1115Google Scholar

    [52]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218Google Scholar

    [53]

    Xie B, Tang K, Cheng H, Liu Z, Chen S, Tian J 2017 Adv. Mater. 29 1603507Google Scholar

    [54]

    Wang Z, Zhang Q, Zhang K, Hu G 2016 Adv. Mater. 28 9857Google Scholar

    [55]

    Gao L H, Cheng Q, Yang J, et al. 2015 Light-Sci. Appl. 4 e324Google Scholar

    [56]

    Ma Q, Shi C B, Bai G D, Chen T Y, Noor A, Cui T J 2017 Adv. Opt. Mater. 5 1700548Google Scholar

    [57]

    Zhang L, Liu S, Li L, Cui T J 2017 ACS Appl. Mater. Inter. 9 36447Google Scholar

    [58]

    Liu S, Cui T J, Xu Q, et al. 2016 Light-Sci. Appl. 5 e16076Google Scholar

    [59]

    Liu S, Zhang H C, Zhang L, et al. 2017 ACS Appl. Mater. Inter. 9 21503Google Scholar

    [60]

    Wan X, Qi M Q, Chen T Y, Cui T J 2016 Sci. Rep. 6 20663Google Scholar

    [61]

    Cui T J, Liu S, Zhang L 2017 J. Mater. Chem. C 5 3644Google Scholar

    [62]

    Cui T J, Liu S, Li L 2016 Light-Sci. Appl. 5 e16172Google Scholar

    [63]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156Google Scholar

    [64]

    Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236Google Scholar

    [65]

    Li L L, Cui T J, Ji W, Liu S, Ding J, Wan X, Li Y B, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197Google Scholar

    [66]

    Li Y B, Li L L, Xu B B, Wu W, Wu R Y, Wan X, Cheng Q Cui T J 2016 Sci. Rep. 6 23731Google Scholar

    [67]

    Li L, Hurtado M, Xu F, Zhang B C, Jin T, Cui T J, Stevanovic M N, Nehorai A 2018 Found. Trends Signal Process. 12 107Google Scholar

    [68]

    Li L L, Ruan H X, Liu C, Li Y, Shuang Y, Alu A, Qiu C W, Cui T J 2019 Nat. Commun. 10 1082Google Scholar

    [69]

    Cui T J, Liu S, Bai G D, Ma Q 2019 Research 2019 2584509Google Scholar

    [70]

    Wan X, Zhang Q, Chen T Y, Zhang L, Xu W, He H, Xiao C K, Xiao Q, Cui T J 2019 Light-Sci. Appl. 8 60Google Scholar

    [71]

    Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alu A, Cui T J 2019 Nat. Sci. Rev. 6 231Google Scholar

    [72]

    Dai J Y, Zhao J, Cheng Q, Cui T J 2018 Light-Sci. Appl. 7 90Google Scholar

    [73]

    Dai J Y, Tang W K, Zhao J, Li X, Cheng Q, Ke J C, Chen M Z, Jin S, Cui T J 2019 Adv. Mater. Tech. 4 1900044Google Scholar

    [74]

    Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, Wong K K, Cui T J 2019 Electron. Lett. 55 417Google Scholar

    [75]

    Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, Wong K K, Cui T J 2019 Electron. Lett. 55 360Google Scholar

    [76]

    Dai J Y, Tang W, Yang L X, Li X, Chen M Z, Ke J C, Cheng Q, Jin S, Cui T J 2019 IEEE. T. Antenn. Propag. 6 7Google Scholar

    [77]

    Tang W, Li X, Dai J Y, Jin S, Zeng Y, Cheng Q, Cui T J 2019 China Commun. 16 46

    [78]

    Basar E, Renzo M D, Rosny J D, Debbah M, Alouini M, Zhang R 2019 IEEE Access 7 116753Google Scholar

    [79]

    Tang W, Chen M Z, Chen X, Dai J Y, Han Y, Renzo M D, Zeng Y, Jin S, Cheng Q, Cui T J 2020 IEEE Trans. Wirel. Commun. arxiv: 1911.05326

    [80]

    Tang W, Chen M Z, Dai J Y, Zeng Y, Zhao X, Jin S, Cheng Q, Cui T J 2019 IEEE Trans. Wirel. Commun. 27 180Google Scholar

    [81]

    Bao L, Ma Q, Bai G D, Jing H B, Wu R Y, Yang C, Wu J, Fu X, Cui T J 2018 Appl. Phys. Lett. 113 063502Google Scholar

    [82]

    Luo J, Ma Q, Jing H B, Bai G D, Wu R Y, Bao L, Cui T J 2019 J. App. Phys. 126 113102Google Scholar

    [83]

    Zhang L, Chen X Q, Liu S, et al. 2018 Nat. Commun. 9 4334Google Scholar

    [84]

    Zhang L, Chen X Q, Shao R W, Dai J Y, Cheng Q, Castaldi G, Galdi V, Cui T J 2019 Adv. Mater. 31 1904069Google Scholar

    [85]

    Chen L, Ma Q, Jing H B, Cui H Y, Liu Y, Cui T J 2019 Phys. Rev. Appl. 11 054051Google Scholar

    [86]

    Luo Z, Chen M Z, Wang Z X, Zhou L, Wang Q, Li Y B, Cheng Q, Ma H F, Cui T J 2019 Adv. Funct. Mater. 29 1906635Google Scholar

    [87]

    Luo Z J, Wang Q, Zhang X G, et al. 2019 Adv. Opt. Mater. 7 1900792Google Scholar

    [88]

    Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028Google Scholar

    [89]

    Wang Q, Zhang X G, Tian H W, et al. 2019 Adv. Theory Simul. 2 1900141Google Scholar

    [90]

    Zhang X G, Jiang W X, Jiang H L, et al. 2020 Nat. Electron. 3 165Google Scholar

    [91]

    Ma Q, Bai G D, Jing H B, Yang C, Li L, Cui T J 2019 Light-Sci. Appl. 8 98Google Scholar

    [92]

    Li L, Shuang Y, Ma Q, Li H, Zhao H, Wei M, Liu C, Hao C, Qiu C W, Cui T J 2019 Light-Sci. Appl. 8 97Google Scholar

    [93]

    Li H Y, Zhao H T, Wei M L, Ruan H X, Shuang Y, Cui T J, Li L 2020 Patterns 1 100006Google Scholar

    [94]

    Cui T J 2017 J. Opt. 19 084004Google Scholar

    [95]

    Cui T J 2018 Nat. Sci. Rev. 5 134Google Scholar

  • [1] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [4] Jiang Xiao-Wei, Wu Hua. Metamaterial absorber with controllable absorption wavelength and absorption efficiency. Acta Physica Sinica, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [5] Jin Ke, Liu Yong-Qiang, Han Jun, Yang Chong-Min, Wang Ying-Hui, Wang Hui-Na. Middle-wave infrared and broadband polarization conversion based on metamaterial. Acta Physica Sinica, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [6] Wang Zhao-Kun, Yang Zhen-Yu, Tao Huan, Zhao Ming. High-efficiency wavefront control with based on helical metamaterials. Acta Physica Sinica, 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [7] Xu Xin-He, Liu Ying, Gan Yue-Hong, Liu Wen-Miao. A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Acta Physica Sinica, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [8] Chang Hong-Wei, Ma Hua, Zhang Jie-Qiu, Zhang Zhi-Yuan, Xu Zhuo, Wang Jia-Fu, Qu Shao-Bo. Optimization of metamaterial based weighted real-coded genetic algorithm. Acta Physica Sinica, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [9] Han Song, Yang He-Lin. Study on the design and measurement of dual-directional multi-band metamaterial absorber. Acta Physica Sinica, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [10] Ding Min, Xue Hui, Wu Bo, Sun Bing-Bing, Liu Zheng, Huang Zhi-Xiang, Wu Xian-Liang. The comparisons between two retrieve algorithms for metamaterials. Acta Physica Sinica, 2013, 62(4): 044218. doi: 10.7498/aps.62.044218
    [11] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [12] Liu Tao, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Li Wen-Qiang. Design of metamaterial absorber and its applications for waveguide slot antenna. Acta Physica Sinica, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [13] Su Yan-Yan, Gong Bo-Yi, Zhao Xiao-Peng. Zero-index metamaterial based on double-negative structure. Acta Physica Sinica, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [14] Shen Xiao-Peng, Cui Tie-Jun, Ye Jian-Xiang. Dual band metamaterial absorber in microwave regime. Acta Physica Sinica, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [15] Zhao Yan, Xiang Jian-Kai, Li Sa, Zhao Xiao-Peng. Visible light metamaterials based on the double-fishnet structure. Acta Physica Sinica, 2011, 60(5): 054211. doi: 10.7498/aps.60.054211
    [16] Zhong Shun-Lin, Han Man-Gui, Deng Long-Jiang. Electric tunability of microwave permeability dispersion behaviors of metamaterials. Acta Physica Sinica, 2011, 60(11): 117501. doi: 10.7498/aps.60.117501
    [17] Sun Liang-Kui, Cheng Hai-Feng, Zhou Yong-Jiang, Wang Jun, Pang Yong-Qiang. Design and preparation of a radar-absorbing material based on metamaterial. Acta Physica Sinica, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [18] Wen Ru-Ming, Li Ling-Yun, Han Ke-Wu, Sun Xiao-Wei. A quick novel experimental method of metamaterial electromagnetic cloaking structure at microwave frequencies. Acta Physica Sinica, 2010, 59(7): 4607-4611. doi: 10.7498/aps.59.4607
    [19] Xiang Jian-Kai, Ma Zhong-Hong, Zhao Yan, Zhao Xiao-Peng. Planar focus effect of visible light metamaterials. Acta Physica Sinica, 2010, 59(6): 4023-4029. doi: 10.7498/aps.59.4023
    [20] Fu Fei-Ya, Chen Wei, Zhou Wen-Jun, Liu An-Jin, Xing Ming-Xin, Wang Yu-Fei, Zheng Wan-Hua. Electromagnetic resonance in nanosandwich photonic metamaterial. Acta Physica Sinica, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
Metrics
  • Abstract views:  14993
  • PDF Downloads:  1048
  • Cited By: 0
Publishing process
  • Received Date:  19 February 2020
  • Accepted Date:  06 March 2020
  • Available Online:  16 September 2020
  • Published Online:  05 August 2020

/

返回文章
返回