Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of the investigation of intrinsic and extrinsic origin of piezoelectric materials by X-ray diffraction

Zhang Guan-Jie Yang Hao Zhang Nan

Citation:

Research progress of the investigation of intrinsic and extrinsic origin of piezoelectric materials by X-ray diffraction

Zhang Guan-Jie, Yang Hao, Zhang Nan
PDF
HTML
Get Citation
  • Ferroelectric/piezoelectric perovskites are an important class of functional material and have broad application prospects in commercial, industrial, military and other areas because of their high dielectric constants, high piezoelectric coefficients, and high electromechanical coupling coefficients. Their structures, applications, and physical mechanisms have been intensively studied in condensed matter physics and material science. The piezoelectric properties of ferroelectric materials mainly originate from the intrinsic field-induced lattice distortion and extrinsic domain inversion and domain wall motion. Therefore, the understanding of and the distinguishing between these mechanisms are important for ascertaining the origin of the high-piezoelectric properties and developing new functional materials. In this article, we review the research progress of technical means and methodology of analyzing the changes of crystal lattices and magnetic domains of materials under the action of an externally applied electric field through the high-energy synchrotron X-ray diffraction experiments. The techniques and analysis methods involved in the review cover the time-resolved X-ray diffraction, single/double-peak analysis, full-pattern refinement, center-of-mass calculation, and field-induced phase transformation analysis, which are used to study the intrinsic and extrinsic contributions to sample’s macroscopic properties. It is expected to provide the research methods, which fulfill the individual experimental requirements, and the technical support for the mechanism analysis of various piezoelectric materials through the introduction and review of various methods.
      Corresponding author: Zhang Nan, nzhang1@xjtu.edu.cn
    [1]

    Berlincourt D 1992 J. Acoust. Soc. Am. 91 3034Google Scholar

    [2]

    King T G, Preston M E, Murphy B J M, Cannell D S 1990 Precis. Eng. 12 131Google Scholar

    [3]

    Uchino K 2015 Sci. Technol. Adv. Mater. 16 46001Google Scholar

    [4]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [5]

    Bellaiche L, Vanderbilt D 1999 Phys. Rev. Lett. 83 1347Google Scholar

    [6]

    Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, Xu Z, Huang Q, Liao X, Chen L Q, Shrout T R, Zhang S 2018 Nat. Mater. 17 349Google Scholar

    [7]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar

    [8]

    Zhang N, Yokota H, Glazer A M, Ren Z, Keen D A, Keeble D S, Thomas P A, Ye Z G 2014 Nat. Commun. 5 5231Google Scholar

    [9]

    Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423Google Scholar

    [10]

    Hollenstein E, Davis M, Damjanovic D, Setter N 2005 Appl. Phys. Lett. 87 182905Google Scholar

    [11]

    Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D, Zhu J 2016 Adv. Mater. 28 8519Google Scholar

    [12]

    Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, Zhang B, Lou X, Wang X 2014 J. Am. Chem. Soc. 136 2905Google Scholar

    [13]

    Wang K, Li J F 2010 Adv. Funct. Mater. 20 1924Google Scholar

    [14]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [15]

    McQuade R R, Dolgos M R 2016 J. Solid State Chem. 242 140Google Scholar

    [16]

    Paterson A R, Nagata H, Tan X, Daniels J E, Hinterstein M, Ranjan R, Groszewicz P B, Jo W, Jones J L 2018 MRS Bull. 43 600Google Scholar

    [17]

    Du X H, Zheng J, Belegundu U, Uchino K 1998 Appl. Phys. Lett. 72 2421Google Scholar

    [18]

    Fu H, Cohen R E 2000 Nature 403 281Google Scholar

    [19]

    Noheda B, Cox D E 2006 Phase Transitions 79 5Google Scholar

    [20]

    Ye Z G, Noheda B, Dong M, Cox D, Shirane G 2001 Phys. Rev. B 64 184114Google Scholar

    [21]

    Li F, Zhang S, Damjanovic D, Chen L Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar

    [22]

    Clegg W 2015 X-ray Crystallography (New York: Oxford University Press) pp1–31

    [23]

    Rietveld H M 1969 J. Appl. Crystallogr. 2 65Google Scholar

    [24]

    Hammond C 2009 The Basics of Crystallography and Diffraction Struct. Chem. (New York: Oxford University Press) pp252–267

    [25]

    David W I F, Shankland K, Baerlocher C, McCusker L B 2002 Structure Determination from Powder Diffraction Data (New York: Oxford University Press) pp88–93

    [26]

    Tagantsev A K, Cross L E, Fousek J 2010 Domains in Ferroic Crystals and Thin Films (New York: Springer New York) pp11–74

    [27]

    Viehland D D, Salje E K H 2014 Adv. Phys. 63 267Google Scholar

    [28]

    Jones J L, Aksel E, Tutuncu G, Usher T M, Chen J, Xing X, Studer A J 2012 Phys. Rev. B 86 024104Google Scholar

    [29]

    Als-Nielsen J, McMorrow D 2011 Elements of Modern X-ray Physics (Chichester: A John Wiley & Sons, Ltd Publication) pp33–42

    [30]

    Broennimann C 2008 Acta Crystallogr. Sect. A Found. Crystallogr. 64 C162Google Scholar

    [31]

    Daniels J E, Finlayson T R, Studer A J, Hoffman M, Jones J L 2007 J. Appl. Phys. 101 094104Google Scholar

    [32]

    Daniels J, Pramanick A, Jones J 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1539Google Scholar

    [33]

    Choe H, Bieker J, Zhang N, Glazer A M, Thomas P A, Gorfman S 2018 IUCrJ 5 417Google Scholar

    [34]

    Eckold G, Schober H, Nagler S E 2010 Studying Kinetics with Neutrons (Berlin, Heidelberg: Springer Berlin Heidelberg) pp149–173

    [35]

    Jiang A Q, Lee H J, Hwang C S, Scott J F 2012 Adv. Funct. Mater. 22 192Google Scholar

    [36]

    Bai F, Wang N, Li J, Viehland D, Gehring P M, Xu G, Shirane G 2004 J. Appl. Phys. 96 1620Google Scholar

    [37]

    Ehara Y, Yasui S, Nagata J, Kan D, Anbusathaiah V, Yamada T, Sakata O, Funakubo H, Nagarajan V 2011 Appl. Phys. Lett. 99 182906Google Scholar

    [38]

    Rana D S, Kawayama I, Mavani K, Takahashi K, Murakami H, Tonouchi M 2009 Adv. Mater. 21 2881Google Scholar

    [39]

    Eckold G, Gibhardt H, Caspary D, Elter P, Elisbihani K 2003 Z. Kristallogr. 218 144Google Scholar

    [40]

    Choe H, Heidbrink S, Ziolkowski M, Pietsch U, Dyadkin V, Gorfman S, Chernyshov D 2017 J. Appl. Crystallogr. 50 975Google Scholar

    [41]

    Usher T M, Levin I, Daniels J E, Jones J L 2015 Sci. Rep. 5 14678Google Scholar

    [42]

    Vergentev T, Bronwald I, Chernyshov D, Gorfman S, Ryding S H M, Thompson P, Cernik R J 2016 J. Appl. Crystallogr. 49 1501Google Scholar

    [43]

    Kitanaka Y, Noguchi Y, Miyayama M, Kagawa Y, Moriyoshi C, Kuroiwa Y 2013 Ferroelectrics 443 1Google Scholar

    [44]

    Moriyoshi C, Hiramoto S, Ohkubo H, Kuroiwa Y, Osawa H, Sugimoto K, Kimura S, Takata M, Kitanaka Y, Noguchi Y, Miyayama M 2011 Jpn. J. Appl. Phys. 50 09NE05Google Scholar

    [45]

    Gorfman S, Keeble D S, Glazer A M, Long X, Xie Y, Ye Z G, Collins S, Thomas P A 2011 Phys. Rev. B 84 020102Google Scholar

    [46]

    Gorfman S, Thomas P A 2010 J. Appl. Crystallogr. 43 1409Google Scholar

    [47]

    Datta K, Gorfman S, Thomas P A 2009 Appl. Phys. Lett. 95 251901Google Scholar

    [48]

    Daymond M R 2004 J. Appl. Phys. 96 4263Google Scholar

    [49]

    Pramanick A, Damjanovic D, Daniels J E, Nino J C, Jones J L 2011 J. Am. Ceram. Soc. 94 293Google Scholar

    [50]

    Ehmke M C, Khansur N H, Daniels J E, Blendell J E, Bowman K J 2014 Acta Mater. 66 340Google Scholar

    [51]

    Jones J L, Slamovich E B, Bowman K J 2005 J. Appl. Phys. 97 034113Google Scholar

    [52]

    Jones J L, Hoffman M, Bowman K J 2005 J. Appl. Phys. 98 024115Google Scholar

    [53]

    Kungl H, Theissmann R, Knapp M, Baehtz C, Fuess H, Wagner S, Fett T, Hoffmann M J 2007 Acta Mater. 55 1849Google Scholar

    [54]

    Hall D A, Steuwer A, Cherdhirunkorn B, Mori T, Withers P J 2004 J. Appl. Phys. 96 4245Google Scholar

    [55]

    Fan L, Chen J, Ren Y, Pan Z, Zhang L, Xing X 2016 Phys. Rev. Lett. 116 027601Google Scholar

    [56]

    Hinterstein M, Lee K Y, Esslinger S, Glaum J, Studer A J, Hoffman M, Hoffmann M J 2019 Phys. Rev. B 99 174107Google Scholar

    [57]

    Matthies S, Lutteroti L, Wenk H R 1997 J. Appl. Crystallogr. 30 31Google Scholar

    [58]

    Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H R 2007 Z. Kristallogr. Suppl. 26 125Google Scholar

    [59]

    Hinterstein M, Hoelzel M, Rouquette J, Haines J, Glaum J, Kungl H, Hoffman M 2015 Acta Mater. 94 319Google Scholar

    [60]

    Khansur N H, Hinterstein M, Wang Z, Groh C, Jo W, Daniels J E 2015 Appl. Phys. Lett. 107 242902Google Scholar

    [61]

    Zhao C, Hou D, Chung C-C, Zhou H, Kynast A, Hennig E, Liu W, Li S, Jones J L 2018 Acta Mater. 158 369Google Scholar

    [62]

    Fu J, Zuo R, Xu Y, Li J F, Shi M 2017 J. Eur. Ceram. Soc. 37 975Google Scholar

    [63]

    Ochoa D A, Esteves G, Iamsasri T, Rubio-Marcos F, Fernández J F, García J E, Jones J L 2016 J. Eur. Ceram. Soc. 36 2489Google Scholar

    [64]

    Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, Wu J, Wang K, Li J F, Gu Y, Zhu J, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar

    [65]

    Tutuncu G, Li B, Bowman K, Jones J L 2014 J. Appl. Phys. 115 144104Google Scholar

    [66]

    Khansur N H, Rojac T, Damjanovic D, Reinhard C, Webber K G, Kimpton J A, Daniels J E 2015 J. Am. Ceram. Soc. 98 3884Google Scholar

    [67]

    Li Y, Chen Y, Zhang Z, Kleppe A, Hall D A 2019 Acta Mater. 168 411Google Scholar

    [68]

    Zuo R, Qi H, Fu J, Li J F, Li L 2017 Appl. Phys. Lett. 111 132901Google Scholar

    [69]

    Hu C, Meng X, Zhang M H, Tian H, Daniels J E, Tan P, Huang F, Li L, Wang K, Li J F, Lu Q, Cao W, Zhou Z 2020 Sci. Adv. 6 eaay5979Google Scholar

    [70]

    Zhang N, Gorfman S, Choe H, Vergentev T, Dyadkin V, Yokota H, Chernyshov D, Wang B, Glazer A M, Ren W, Ye Z G 2018 J. Appl. Crystallogr. 51 1396Google Scholar

    [71]

    Hinterstein M, Knapp M, Hölzel M, Jo W, Cervellino A, Ehrenberg H, Fuess H 2010 J. Appl. Crystallogr. 43 1314Google Scholar

    [72]

    Kling J, Tan X, Jo W, Kleebe H J, Fuess H, Rödel J 2010 J. Am. Ceram. Soc. 93 2452Google Scholar

    [73]

    Daniels J E, Jo W, Rödel J, Honkimäki V, Jones J L 2010 Acta Mater. 58 2103Google Scholar

    [74]

    Durbin M K, Jacobs E W, Hicks J C, Park S E 1999 Appl. Phys. Lett. 74 2848Google Scholar

    [75]

    Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663Google Scholar

    [76]

    Noheda B, Cox D E, Shirane G, Park S E, Cross L E, Zhong Z 2001 Phys. Rev. Lett. 86 3891Google Scholar

    [77]

    Fu J, Zuo R, Gao X 2013 Appl. Phys. Lett. 103 182907Google Scholar

    [78]

    Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171Google Scholar

    [79]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [80]

    Simons H, Daniels J E, Glaum J, Studer A J, Jones J L, Hoffman M 2013 Appl. Phys. Lett. 102 062902Google Scholar

    [81]

    Ren P, Liu Z, Liu H, Sun S, Wan Y, Long C, Shi J, Chen J, Zhao G 2019 J. Eur. Ceram. Soc. 39 994Google Scholar

    [82]

    Wang G, Fan Z, Murakami S, Lu Z, Hall D A, Sinclair D C, Feteira A, Tan X, Jones J L, Kleppe A K, Wang D, Reaney I M 2019 J. Mater. Chem. A 7 21254Google Scholar

    [83]

    Xu G, Zhong Z, Bing Y, Ye Z G, Shirane G 2006 Nat. Mater. 5 134Google Scholar

    [84]

    Xu G, Wen J, Stock C, Gehring P M 2008 Nat. Mater. 7 562Google Scholar

    [85]

    Paściak M, Welberry T R, Kulda J, Kempa M, Hlinka J 2012 Phys. Rev. B 85 224109Google Scholar

    [86]

    Li F, Zhang S, Yang T, Xu Z, Zhang N, Liu G, Wang J, Wang J, Cheng Z, Ye Z G, Luo J, Shrout T R, Chen L Q 2016 Nat. Commun. 7 13807Google Scholar

    [87]

    Polinger V, Bersuker I B 2018 Phys. Rev. B 98 214102Google Scholar

    [88]

    Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31Google Scholar

    [89]

    Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [90]

    Welberry T R 2004 Diffuse X-Ray Scattering and Models of Disorder (New York: Oxford University Press) pp4−20

  • 图 1  频闪数据收集原理

    Figure 1.  Principle of stroboscopic data-acquisition

    图 2  (a) Choe等[40]的数据采集系统; (b) Choe等[40]的系统中信号同步过程; (c) Daniels等[41]的数据采集系统; (d) Daniels等的系统中数据采集的时间序列; (e)频闪技术中样品所施加电场与时间的关系, 以及相关衍射强度随电场变化趋势[40]

    Figure 2.  (a) Data acquisition system by Choe et al.[40]; (b) signal synchronization process in the system of Choe et al.[40]; (c) data acquisition system by Daniels et al.[41]; (d) timing sequences for data acquisition processes in the system of Daniels et al.; (e) time dependence of the AC electric field and the collected intensity of diffraction wings, showing the field-induced intensity exchange between the two wings[40]. (a) (b) (e) Copyright © 2017 International Union of Crystallography. Reproduced with permission of the International Union of Crystallography.

    图 3  NBT单晶{00h}衍射峰X-ray衍射峰强度 (a) {002}衍射峰的静态ω-2θ二维衍射图像; (b)外加电场(沿[001]方向)与时间的关系; (c)−(e)使用频闪技术收集到的{004}衍射峰的ω-2θ二维衍射图像, 分别对应不同的时间通道与电场[33]

    Figure 3.  Diffraction intensity of the X-ray around the {00h} family of reflections of NBT single crystal: (a) Static ω versus 2θ mesh of the {002} reflections family; (b) the time-dependence of the applied external electric field (along [001]); (c)−(e) stroboscopically collected versus 2θ meshes of the {004} family of reflections, corresponding to different time channels and electric fields[33]

    图 4  NBT单晶中不同{hkl}pc衍射峰的ω-2θ二维衍射图像, 其中从上到下的白线表示三方相, 单斜相Cc和三方-四方混合相可能的分峰$ 2\theta $位置  (a) {222}; (b) {114}[46]

    Figure 4.  Two ω versus 2θ maps for different {hkl}pc of NBT single crystal collected on the high-resolution diffractometer. The lines indicate the simulated position of the scattering angle: from top to bottom, rhombohedral, monoclinic, and a combination of rhombohedral and tetragonal: (a) {222}; (b) {114}[46] (Copyright © 2010 International Union of Crystallography. Reproduced with permission of the International Union of Crystallography)

    图 5  时间分辨高能X射线衍射装置以及德拜环不同区域分别对应晶粒方向与电场不同夹角的衍射图谱[49]

    Figure 5.  Experimental set-up for time-resolved high-energy X-ray diffraction. Different sections in the Debye ring correspond to grains with specific angles respect to the applied E field[49] (Copyright © 2011 John Wiley and Sons).

    图 6  La掺杂PZT陶瓷中002畴体积分数与电场不同夹角的关系(底图分别显示与电场呈0°与90°条件下(002)与(200)衍射峰体积分数的变化)[49]

    Figure 6.  η002 as a function of the field amplitude as well as orientation with respect to the direction of applied field, for an unpoled La-doped tetragonal PZT ceramic under the application of static electric fields. The measured and fitted (002)-type diffraction peaks corresponding to the particular values of η002 (marked by circles and indicated by arrows) are shown in the bottom section of the figure. For the fitted diffraction patterns, the deconvoluted (200) and (002) peaks are shown in black solid lines. The integration of individual (002) and (200) peaks are terminated beyond the peak position of the adjacent peak, as indicated by the color-shaded areas[49] (Copyright © 2011 John Wiley and Sons).

    图 7  NBT-BT陶瓷在施加最大电场Emax = 4 kV/mm下的实验(a)和模拟(b)所得的取向相关衍射图样[60]

    Figure 7.  Measured (a) and modelled (b) orientation dependent diffraction patterns of NBT-BT at maximum field Emax = 4 kV/mm[60] (Copyright © 2015 AIP Publishing).

    图 8  La掺杂的PbZr0.52Ti0.48O3陶瓷中晶格应变与畴壁运动对宏观压电常数及非线性压电常数的贡献[49]

    Figure 8.  Contributions of lattice strain and domain wall motion to macroscopic piezoelectric coefficient and non-linear piezoelectric coefficient in La-doped PbZr0.52Ti0.48O3 ceramics[49] (Copyright © 2011 John Wiley and Sons)

    图 9  (1–x)(K1–yNay)(Nb1–zSbz)O3-xBi0.5(Na1–wKw)0.5HfO3 (x = 0.035, y = 0.52, z = 0.05, w = 0.18)陶瓷 (a), (b) (100)和(220)衍射峰随电场的演变过程; (c) (100)和(220)衍射峰中低角度衍射峰与高角度衍射峰的强度之比(I1/I2)随电场的变化[64]

    Figure 9.  (1–x)(K1–yNay)(Nb1–zSbz)O3-xBi0.5(Na1–wKw)0.5HfO3 ceramic with x = 0.035, y = 0.52, z = 0.05 and w = 0.18: (a), (b) Evolution of the (100) and (220) pseudocubic reflections as a function of the electric field; (c) ratio of low angle peak intensity to high angle intensity (I1/I2) for (100) and (220) pseudocubic reflections as a function of the electric field[64] (Copyright © 2017 The Royal Society of Chemistry)

    图 10  NN-BT陶瓷{200}衍射峰在电场作用下的重新分布现象[68]

    Figure 10.  {200} reflections and their redistributions under electric field for NN-BT[68] (Copyright © 2017 AIP Publishing)

    图 11  (a) {111}衍射峰的衍射强度(沿YZ方向积分)与X的关系曲线, 垂直的红蓝线分别对应$ {E}_{+}\backslash {E}_{-} $状态下的质心位置; (b), (c)沿不同X范围积分的二维衍射强度分布图, 分别对应图(a)中的Group 1和Group 2; (d), (e)一个YZ Box范围内积分的衍射强度与X的关系曲线, 其中(d), (e)分别对应Group 1中的Box 2和Group 2中的Box 2 [70]

    Figure 11.  (a) The X dependence of the diffraction intensity around {111} reflections, integrated within the full YZ range. The vertical red and blue lines mark the center of mass positions corresponding to the E+ and ${E_ - } $ states. (b), (c) YZ dependence of the diffraction intensity integrated within two ranges of X, corresponding to Group 1 and Group 2 in panel (a). Several boxes are marked to show the positions of Bragg peak sub-components. (d), (e) Integrated intensities within one YZ box against X under four states of field. (d) Corresponds to Box 2 in Group 1 and (e) to Box 2 in Group 2[70] (Copyright © 2018 International Union of Crystallography. Reproduced with permission of the International Union of Crystallography)

    图 12  三方相-四方相相变中可能的极化矢量旋转路径[18,76]

    Figure 12.  The two possible paths for the polarization direction to change from [111] in the rhombohedral (R) phase to [001] in the tetragonal (T) phase[18,76] (Copyright © 2001 American Physical Society)

    图 13  KNN基陶瓷中的三方相-单斜相-正交相的极化旋转路径

    Figure 13.  Polarization rotation path of rhombohedral-monoclinic-orthorhombic phase in KNN-based ceramic

    图 14  对于0.94NBT-0.06BT陶瓷 (a) 在25, 50, 75和100 ℃下的单极电场-应变曲线; (b) 可恢复应变(SmaxSrem)的温度依赖关系 [80]

    Figure 14.  For 0.94NBT-0.06BT ceramic, (a) unipolar strain hysteresis at 25, 50, 75, and 100 ℃; (b) temperature-dependence of recoverable strain (SmaxSrem)[80] (Copyright © 2013 AIP Publishing)

    图 15  对BF-0.3 BT-0.03 NLN陶瓷在 ± 60 kV/cm的电场下进行了两个电场循环观察到的{111}, {200}和{220}峰的等高线图 (a)平行电场方向; (b)垂直电场方向[82]

    Figure 15.  Contour plots of the {111}, {200} and {220} peak profiles for (a) $ \beta $ = 0° and (b) $ \beta $ = 90° obtained from the in situ X-ray diffraction experiment for BF-0.3 BT-0.03 NLN, with two cycles of electric field poling under ± 60 kV/cm[82] (Copyright © 2019 The Royal Society of Chemistry)

  • [1]

    Berlincourt D 1992 J. Acoust. Soc. Am. 91 3034Google Scholar

    [2]

    King T G, Preston M E, Murphy B J M, Cannell D S 1990 Precis. Eng. 12 131Google Scholar

    [3]

    Uchino K 2015 Sci. Technol. Adv. Mater. 16 46001Google Scholar

    [4]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [5]

    Bellaiche L, Vanderbilt D 1999 Phys. Rev. Lett. 83 1347Google Scholar

    [6]

    Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, Xu Z, Huang Q, Liao X, Chen L Q, Shrout T R, Zhang S 2018 Nat. Mater. 17 349Google Scholar

    [7]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar

    [8]

    Zhang N, Yokota H, Glazer A M, Ren Z, Keen D A, Keeble D S, Thomas P A, Ye Z G 2014 Nat. Commun. 5 5231Google Scholar

    [9]

    Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423Google Scholar

    [10]

    Hollenstein E, Davis M, Damjanovic D, Setter N 2005 Appl. Phys. Lett. 87 182905Google Scholar

    [11]

    Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D, Zhu J 2016 Adv. Mater. 28 8519Google Scholar

    [12]

    Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, Zhang B, Lou X, Wang X 2014 J. Am. Chem. Soc. 136 2905Google Scholar

    [13]

    Wang K, Li J F 2010 Adv. Funct. Mater. 20 1924Google Scholar

    [14]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [15]

    McQuade R R, Dolgos M R 2016 J. Solid State Chem. 242 140Google Scholar

    [16]

    Paterson A R, Nagata H, Tan X, Daniels J E, Hinterstein M, Ranjan R, Groszewicz P B, Jo W, Jones J L 2018 MRS Bull. 43 600Google Scholar

    [17]

    Du X H, Zheng J, Belegundu U, Uchino K 1998 Appl. Phys. Lett. 72 2421Google Scholar

    [18]

    Fu H, Cohen R E 2000 Nature 403 281Google Scholar

    [19]

    Noheda B, Cox D E 2006 Phase Transitions 79 5Google Scholar

    [20]

    Ye Z G, Noheda B, Dong M, Cox D, Shirane G 2001 Phys. Rev. B 64 184114Google Scholar

    [21]

    Li F, Zhang S, Damjanovic D, Chen L Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504Google Scholar

    [22]

    Clegg W 2015 X-ray Crystallography (New York: Oxford University Press) pp1–31

    [23]

    Rietveld H M 1969 J. Appl. Crystallogr. 2 65Google Scholar

    [24]

    Hammond C 2009 The Basics of Crystallography and Diffraction Struct. Chem. (New York: Oxford University Press) pp252–267

    [25]

    David W I F, Shankland K, Baerlocher C, McCusker L B 2002 Structure Determination from Powder Diffraction Data (New York: Oxford University Press) pp88–93

    [26]

    Tagantsev A K, Cross L E, Fousek J 2010 Domains in Ferroic Crystals and Thin Films (New York: Springer New York) pp11–74

    [27]

    Viehland D D, Salje E K H 2014 Adv. Phys. 63 267Google Scholar

    [28]

    Jones J L, Aksel E, Tutuncu G, Usher T M, Chen J, Xing X, Studer A J 2012 Phys. Rev. B 86 024104Google Scholar

    [29]

    Als-Nielsen J, McMorrow D 2011 Elements of Modern X-ray Physics (Chichester: A John Wiley & Sons, Ltd Publication) pp33–42

    [30]

    Broennimann C 2008 Acta Crystallogr. Sect. A Found. Crystallogr. 64 C162Google Scholar

    [31]

    Daniels J E, Finlayson T R, Studer A J, Hoffman M, Jones J L 2007 J. Appl. Phys. 101 094104Google Scholar

    [32]

    Daniels J, Pramanick A, Jones J 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1539Google Scholar

    [33]

    Choe H, Bieker J, Zhang N, Glazer A M, Thomas P A, Gorfman S 2018 IUCrJ 5 417Google Scholar

    [34]

    Eckold G, Schober H, Nagler S E 2010 Studying Kinetics with Neutrons (Berlin, Heidelberg: Springer Berlin Heidelberg) pp149–173

    [35]

    Jiang A Q, Lee H J, Hwang C S, Scott J F 2012 Adv. Funct. Mater. 22 192Google Scholar

    [36]

    Bai F, Wang N, Li J, Viehland D, Gehring P M, Xu G, Shirane G 2004 J. Appl. Phys. 96 1620Google Scholar

    [37]

    Ehara Y, Yasui S, Nagata J, Kan D, Anbusathaiah V, Yamada T, Sakata O, Funakubo H, Nagarajan V 2011 Appl. Phys. Lett. 99 182906Google Scholar

    [38]

    Rana D S, Kawayama I, Mavani K, Takahashi K, Murakami H, Tonouchi M 2009 Adv. Mater. 21 2881Google Scholar

    [39]

    Eckold G, Gibhardt H, Caspary D, Elter P, Elisbihani K 2003 Z. Kristallogr. 218 144Google Scholar

    [40]

    Choe H, Heidbrink S, Ziolkowski M, Pietsch U, Dyadkin V, Gorfman S, Chernyshov D 2017 J. Appl. Crystallogr. 50 975Google Scholar

    [41]

    Usher T M, Levin I, Daniels J E, Jones J L 2015 Sci. Rep. 5 14678Google Scholar

    [42]

    Vergentev T, Bronwald I, Chernyshov D, Gorfman S, Ryding S H M, Thompson P, Cernik R J 2016 J. Appl. Crystallogr. 49 1501Google Scholar

    [43]

    Kitanaka Y, Noguchi Y, Miyayama M, Kagawa Y, Moriyoshi C, Kuroiwa Y 2013 Ferroelectrics 443 1Google Scholar

    [44]

    Moriyoshi C, Hiramoto S, Ohkubo H, Kuroiwa Y, Osawa H, Sugimoto K, Kimura S, Takata M, Kitanaka Y, Noguchi Y, Miyayama M 2011 Jpn. J. Appl. Phys. 50 09NE05Google Scholar

    [45]

    Gorfman S, Keeble D S, Glazer A M, Long X, Xie Y, Ye Z G, Collins S, Thomas P A 2011 Phys. Rev. B 84 020102Google Scholar

    [46]

    Gorfman S, Thomas P A 2010 J. Appl. Crystallogr. 43 1409Google Scholar

    [47]

    Datta K, Gorfman S, Thomas P A 2009 Appl. Phys. Lett. 95 251901Google Scholar

    [48]

    Daymond M R 2004 J. Appl. Phys. 96 4263Google Scholar

    [49]

    Pramanick A, Damjanovic D, Daniels J E, Nino J C, Jones J L 2011 J. Am. Ceram. Soc. 94 293Google Scholar

    [50]

    Ehmke M C, Khansur N H, Daniels J E, Blendell J E, Bowman K J 2014 Acta Mater. 66 340Google Scholar

    [51]

    Jones J L, Slamovich E B, Bowman K J 2005 J. Appl. Phys. 97 034113Google Scholar

    [52]

    Jones J L, Hoffman M, Bowman K J 2005 J. Appl. Phys. 98 024115Google Scholar

    [53]

    Kungl H, Theissmann R, Knapp M, Baehtz C, Fuess H, Wagner S, Fett T, Hoffmann M J 2007 Acta Mater. 55 1849Google Scholar

    [54]

    Hall D A, Steuwer A, Cherdhirunkorn B, Mori T, Withers P J 2004 J. Appl. Phys. 96 4245Google Scholar

    [55]

    Fan L, Chen J, Ren Y, Pan Z, Zhang L, Xing X 2016 Phys. Rev. Lett. 116 027601Google Scholar

    [56]

    Hinterstein M, Lee K Y, Esslinger S, Glaum J, Studer A J, Hoffman M, Hoffmann M J 2019 Phys. Rev. B 99 174107Google Scholar

    [57]

    Matthies S, Lutteroti L, Wenk H R 1997 J. Appl. Crystallogr. 30 31Google Scholar

    [58]

    Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H R 2007 Z. Kristallogr. Suppl. 26 125Google Scholar

    [59]

    Hinterstein M, Hoelzel M, Rouquette J, Haines J, Glaum J, Kungl H, Hoffman M 2015 Acta Mater. 94 319Google Scholar

    [60]

    Khansur N H, Hinterstein M, Wang Z, Groh C, Jo W, Daniels J E 2015 Appl. Phys. Lett. 107 242902Google Scholar

    [61]

    Zhao C, Hou D, Chung C-C, Zhou H, Kynast A, Hennig E, Liu W, Li S, Jones J L 2018 Acta Mater. 158 369Google Scholar

    [62]

    Fu J, Zuo R, Xu Y, Li J F, Shi M 2017 J. Eur. Ceram. Soc. 37 975Google Scholar

    [63]

    Ochoa D A, Esteves G, Iamsasri T, Rubio-Marcos F, Fernández J F, García J E, Jones J L 2016 J. Eur. Ceram. Soc. 36 2489Google Scholar

    [64]

    Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, Zhao C, Xiao D, Wu J, Wang K, Li J F, Gu Y, Zhu J, Pennycook S J 2017 Energy Environ. Sci. 10 528Google Scholar

    [65]

    Tutuncu G, Li B, Bowman K, Jones J L 2014 J. Appl. Phys. 115 144104Google Scholar

    [66]

    Khansur N H, Rojac T, Damjanovic D, Reinhard C, Webber K G, Kimpton J A, Daniels J E 2015 J. Am. Ceram. Soc. 98 3884Google Scholar

    [67]

    Li Y, Chen Y, Zhang Z, Kleppe A, Hall D A 2019 Acta Mater. 168 411Google Scholar

    [68]

    Zuo R, Qi H, Fu J, Li J F, Li L 2017 Appl. Phys. Lett. 111 132901Google Scholar

    [69]

    Hu C, Meng X, Zhang M H, Tian H, Daniels J E, Tan P, Huang F, Li L, Wang K, Li J F, Lu Q, Cao W, Zhou Z 2020 Sci. Adv. 6 eaay5979Google Scholar

    [70]

    Zhang N, Gorfman S, Choe H, Vergentev T, Dyadkin V, Yokota H, Chernyshov D, Wang B, Glazer A M, Ren W, Ye Z G 2018 J. Appl. Crystallogr. 51 1396Google Scholar

    [71]

    Hinterstein M, Knapp M, Hölzel M, Jo W, Cervellino A, Ehrenberg H, Fuess H 2010 J. Appl. Crystallogr. 43 1314Google Scholar

    [72]

    Kling J, Tan X, Jo W, Kleebe H J, Fuess H, Rödel J 2010 J. Am. Ceram. Soc. 93 2452Google Scholar

    [73]

    Daniels J E, Jo W, Rödel J, Honkimäki V, Jones J L 2010 Acta Mater. 58 2103Google Scholar

    [74]

    Durbin M K, Jacobs E W, Hicks J C, Park S E 1999 Appl. Phys. Lett. 74 2848Google Scholar

    [75]

    Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663Google Scholar

    [76]

    Noheda B, Cox D E, Shirane G, Park S E, Cross L E, Zhong Z 2001 Phys. Rev. Lett. 86 3891Google Scholar

    [77]

    Fu J, Zuo R, Gao X 2013 Appl. Phys. Lett. 103 182907Google Scholar

    [78]

    Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171Google Scholar

    [79]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [80]

    Simons H, Daniels J E, Glaum J, Studer A J, Jones J L, Hoffman M 2013 Appl. Phys. Lett. 102 062902Google Scholar

    [81]

    Ren P, Liu Z, Liu H, Sun S, Wan Y, Long C, Shi J, Chen J, Zhao G 2019 J. Eur. Ceram. Soc. 39 994Google Scholar

    [82]

    Wang G, Fan Z, Murakami S, Lu Z, Hall D A, Sinclair D C, Feteira A, Tan X, Jones J L, Kleppe A K, Wang D, Reaney I M 2019 J. Mater. Chem. A 7 21254Google Scholar

    [83]

    Xu G, Zhong Z, Bing Y, Ye Z G, Shirane G 2006 Nat. Mater. 5 134Google Scholar

    [84]

    Xu G, Wen J, Stock C, Gehring P M 2008 Nat. Mater. 7 562Google Scholar

    [85]

    Paściak M, Welberry T R, Kulda J, Kempa M, Hlinka J 2012 Phys. Rev. B 85 224109Google Scholar

    [86]

    Li F, Zhang S, Yang T, Xu Z, Zhang N, Liu G, Wang J, Wang J, Cheng Z, Ye Z G, Luo J, Shrout T R, Chen L Q 2016 Nat. Commun. 7 13807Google Scholar

    [87]

    Polinger V, Bersuker I B 2018 Phys. Rev. B 98 214102Google Scholar

    [88]

    Bokov A A, Ye Z G 2006 J. Mater. Sci. 41 31Google Scholar

    [89]

    Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [90]

    Welberry T R 2004 Diffuse X-Ray Scattering and Models of Disorder (New York: Oxford University Press) pp4−20

  • [1] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [2] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [3] Pan Hui-Ping, Cheng Feng-Feng, Li Lin, Horng Ray-Hua, Yao Shu-De. Structrual analyses of Ga2+xO3-x thin films grown on sapphire substrates. Acta Physica Sinica, 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
    [4] Li Jia, Fang Qi, Luo Bing-Chi, Zhou Min-Jie, Li Kai, Wu Wei-Dong. Residual stress analysis by grazing-incidence X-ray diffraction on beryllium films. Acta Physica Sinica, 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [5] Han Liang, Liu De-Lian, Chen Xian, Zhao Yu-Qing. The effect of the interlayer CrN on adhesion characteristics of ta-C films on high-speed steel substrate. Acta Physica Sinica, 2013, 62(9): 096802. doi: 10.7498/aps.62.096802
    [6] Xu Xiao-Ming, Miao Wei, Tao Kun. Direct method of determining the lattice parameters of a phase from X-ray diffraction pattern of multi-phase. Acta Physica Sinica, 2011, 60(8): 086101. doi: 10.7498/aps.60.086101
    [7] Cao Gong-Xun, Zhang Xiao-Qing, Sun Zhuan-Lan, Wang Xue-Wen, Lou Ke-Xing, Xia Zhong-Fu. Thermal stability and charge dynamics of piezoelectrets with tailored micro-structure. Acta Physica Sinica, 2010, 59(9): 6514-6520. doi: 10.7498/aps.59.6514
    [8] Sun Zhuan-Lan, Zhang Xiao-Qing, Cao Gong-Xun, Wang Xue-Wen, Xia Zhong-Fu. Preparation and piezoelectricity of fluorocarbon polymer piezoelectret films with ordered void structure. Acta Physica Sinica, 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [9] Li Yong-Hua, Liu Chang-Sheng, Meng Fan-Ling, Wang Yu-Ming, Zheng Wei-Tao. X-ray photoelectron spectroscopy analysis of the effect of thickness on the transformation temperature of NiTi alloy thin films. Acta Physica Sinica, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [10] Zhang Xiao-Qing, Huang Jin-Feng, Wang Xue-Wen, Xia Zhong-Fu. Piezoelectricity of laminated polymer films made of nonporous fluoroethylene and porous polytetrafluoroethylene layers. Acta Physica Sinica, 2009, 58(5): 3525-3531. doi: 10.7498/aps.58.3525
    [11] Li Hong-Tao, Luo Yi, Xi Guang-Yi, Wang Lai, Jiang Yang, Zhao Wei, Han Yan-Jun, Hao Zhi-Biao, Sun Chang-Zheng. Thickness measurement of GaN films by X-ray diffraction. Acta Physica Sinica, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [12] Ming Bao-Quan, Wang Jin-Feng, Zang Guo-Zhong, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [13] Tan Guo-Tai, Chen Zheng-Hao. XRD analysis on lattice structure of La1-xTexMnO3. Acta Physica Sinica, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [14] Qin Pei, Lou Yu-Wan, Yang Chuan-Zheng, Xia Bao-Jia. New computing methods and programs for separating multipe-broadening effects of X-ray diffraction lines. Acta Physica Sinica, 2006, 55(3): 1325-1335. doi: 10.7498/aps.55.1325
    [15] Zhang Peng-Feng, Xia Zhong-Fu, Qiu Xun-Lin, Wang Fei-Peng, Wu Xian-Yong. Influence of charging parameters on piezoelectricity for cellular PP film electrets. Acta Physica Sinica, 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [16] Qiu Xun-Lin, Xia Zhong-Fu, An Zhen-Lian, Wu Xian-Yong. The piezoelectricity of heat-expanded PP cellular electret. Acta Physica Sinica, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [17] Zhang Peng-Feng, Xia Zhong-Fu, Qiu Xun-Lin, Wu Xian-Yong. The measurement of piezoelectric coefficient for PP cellular electret and the improvement of its piezoelectricity. Acta Physica Sinica, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
    [18] Zhang Xiao-Dan, Zhao Ying, Gao Yang-Tao, Zhu Feng, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. Fabrication of intrinsic microcrystalline silicon thin films used for solar cells and its structure. Acta Physica Sinica, 2005, 54(10): 4874-4878. doi: 10.7498/aps.54.4874
    [19] Du Xiao-Song, S. Hak, O. C. Rogojanu, T. Hibma. X-ray study of chromium oxide films epitaxially grown on MgO. Acta Physica Sinica, 2004, 53(10): 3510-3514. doi: 10.7498/aps.53.3510
    [20] Xia Zhong-Fu, Ma Shan-Shan, Zhu Jia-Qian, Qiu Xun-Lin, Zhang Ye-Wen, R. Gerhard-Multhaupt, W. Kuenstler. Piezoelectric activity and its stability of polytetrafluoroethylene(PTFE)films. Acta Physica Sinica, 2003, 52(8): 2075-2080. doi: 10.7498/aps.52.2075
Metrics
  • Abstract views:  8462
  • PDF Downloads:  347
  • Cited By: 0
Publishing process
  • Received Date:  27 February 2020
  • Accepted Date:  08 May 2020
  • Published Online:  20 June 2020

/

返回文章
返回