Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal

Long Ze Xia Xiao-Chuan Shi Jian-Jun Liu Jun Geng Xin-Lei Zhang He-Zhi Liang Hong-Wei

Citation:

Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal

Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei
PDF
HTML
Get Citation
  • In this paper, a Ni/Au vertical structure Schottky diode based on mechanically exfoliated β-Ga2O3 is fabricated. The temperature dependent characteristics of I-V curves are measured. The device shows a good rectifying behavior. As the temperature increases from 300 K to 473 K, the barrier height increases from 1.08 eV to 1.35 eV, and the ideal factor decreases from 1.32 to 1.19. Both of them show strong temperature dependence, which indicates that the Schottky barrier of the device is inhomogeneous. The device has a double exponential forward I-V characteristic curve, which may be related to crystal defects, surface states, surface energy band bending and the effect of mechanical exfoliation from the crystal surface. Through Cheung's method and Norde's method, the series resistances and barrier heights of the device at different temperatures are extracted. It is found that the parameters extracted by the Norde's method are in good agreement with the values obtained from the forward I-V curve. The series resistance decreases with temperature increasing, which is mainly caused by the increase of the concentration of thermally excited carriers. In this paper, the temperature characteristics of the device are modified by the Gauss distribution of the barrier height. The corrected barrier height is 1.54 eV and Richardson's constant is 26.35 A·cm–2·K–2, which is closer to the theoretical value. It shows that the I-V temperature characteristics of Au/Ni/β-Ga2O3 Schottky diodes can be described by the thermionic emission model of the Gauss distribution barrier height accurately. There are a lot of surface states on the surface of Ga2O3 single crystal obtained by Mechanical exfoliation, which has a great influence on the Schottky contact of the device and may lead to the inhomogeneity of Schottky barriers. At the same time, due to mechanical exploiation, the surface of gallium oxide single crystal material is not completely continuous, and the single crystal surface has layered or island structure. This will also cause the inhomogeneous Schottky barrier height. Considering the influence of inhomogeneous barrier on Schottky diode, the method of measuring the temperature characteristics is more suitable to extracting the electrical parameters of β-Ga2O3 Schottky diodes than the method of fitting I-V forward curve by TE model.
      Corresponding author: Liang Hong-Wei, hwliang@dlut.edu.cn
    [1]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [2]

    Montes J, Yang C, Fu H, Yang T H, Fu K, Chen H, Zhou J, Huang X, Zhao Y 2019 Appl. Phys. Lett. 114 162103Google Scholar

    [3]

    Barman S K, Huda M N 2019 Phys. Status Solidi-R. 13 1800554Google Scholar

    [4]

    Qian L X, Wang Y, Wu Z H, Sheng T, Liu X Z 2017 Vacuum 140 106Google Scholar

    [5]

    Wang X, Liu Z, Zhi Y, Li S, Wu Z, Li P, Tang W 2019 Vacuum 166 79Google Scholar

    [6]

    Manandhar S, Battu A K, Devaraj A, Shutthanandan V, Thevuthasan S, Ramana C V 2020 Sci. Rep. 10 178Google Scholar

    [7]

    Yang J, Ren F, Tadjer M, Pearton S, Kuramata A 2018 ECS J. Solid State Sc. 7 Q92Google Scholar

    [8]

    Galazka Z, Irmscher K, Schewski R, Hanke I M, Pietsch M, Ganschow S, Klimm D, Dittmar A, Fiedler A, Schroeder T, Bickermann M 2020 J. Cryst. Growth 529 Unsp 125297

    [9]

    Tang H L, He N T, Zhang H, Liu B, Zhu Z C, Xu M X, Chen L, Liu J L, Ouyang X P, Xu J 2020 Crystengcomm 22 924Google Scholar

    [10]

    Matsuzaki K, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H 2006 Thin Solid Films 496 37Google Scholar

    [11]

    Wang D, He L N, Le Y, Feng X J, Luan C N, Xiao H D, Ma J 2020 Ceram. Int. 46 4568Google Scholar

    [12]

    Matsuzaki K, Yanagi H, Kamiya T, Hiramatsu H, Nomura K, Hirano M, Hosono H 2006 Appl. Phys. Lett. 88 92106Google Scholar

    [13]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [14]

    Konishi K, Goto K, Murakami H, Kumagai Y, Higashiwaki M 2017 Appl. Phys. Lett. 110 103506Google Scholar

    [15]

    Pearton S J, Ren F, Tadjer M, Kim J 2018 J. Appl. Phys. 124 220901Google Scholar

    [16]

    Yao Y, Gangireddy R, Kim J, Das K K, Porter L M 2017 J. Vac. Sci. Technol., B 35 03D113Google Scholar

    [17]

    Cheung S K, Cheung N W 1986 Appl. Phys. Lett. 49 85Google Scholar

    [18]

    Norde H 1979 J. Appl. Phys. 50 5052Google Scholar

    [19]

    He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X, Liu M 2017 Appl. Phys. Lett. 110 093503Google Scholar

    [20]

    Ahn S, Ren F, Yuan L, Pearton S J, Kuramata A 2017 ECS J. Solid State Sc. 6 P68Google Scholar

    [21]

    Jian G, He Q, Mu W, Fu B, Dong H, Qin Y, Zhang Y, Xue H, Long S, Jia Z, Lv H, Liu Q, Tao X, Liu M 2018 AIP Adv. 8 015316Google Scholar

    [22]

    Fares C, Ren F, Pearton S J 2018 ECS J. Solid State Sc. 8 Q3007Google Scholar

    [23]

    Reddy P R S, Janardhanam V, Shim K H, Reddy V R, Lee S N, Park S J, Choi C J 2020 Vacuum 171 109012Google Scholar

    [24]

    施敏, 伍国珏(耿莉, 张瑞智译) 2008 半导体器件物理(第3版) (西安: 西安交通大学出版社) 第118−119页

    Sze S M, Kwok K N (translated by Geng L, Zhang R) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi'an: Xi'an Jiaotong University Press) pp118−119 (in Chinese)

    [25]

    Shi J J, Xia X C, Liang H W, Abbas Q, Liu J, Zhang H Q, Liu Y 2019 J. Mater. Sci.-Mater. Electron. 30 3860Google Scholar

    [26]

    Ohdomari I, Tu K N 1980 J. Appl. Phys. 51 3735Google Scholar

    [27]

    Tung R T 1992 Phys. Rev. B 45 13509Google Scholar

    [28]

    Güçlü Ç Ş, Özdemir A F, Altindal Ş 2016 Appl. Phys. A 122 1032.1Google Scholar

    [29]

    Marıl E, Altındal Ş, Kaya A, Koçyiğit S, Uslu İ 2015 Philos. Mag. 95 1049Google Scholar

    [30]

    Garrido-Alzar C L 1997 Renewable Energy 10 4Google Scholar

    [31]

    Janardhanam V, Jyothi I, Sekhar Reddy P R, Cho J, Cho J M, Choi C J, Lee S N, Rajagopal Reddy V 2018 Superlattices Microstruct. 120 508Google Scholar

    [32]

    Jyothi I, Seo M W, Janardhanam V, Shim K H, Lee Y B, Ahn K S, Choi C J 2013 J. Alloys Compd. 556 252Google Scholar

    [33]

    Mönch W 2007 Appl. Phys. A 87 359Google Scholar

    [34]

    Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, hao Y 2018 Superlattices Microstruct. 119 212Google Scholar

    [35]

    Shen Y, Feng Q, Zhang K, Hu Z, Yan G, Cai Y, Mu W, Jia Z, Zhang C, Zhou H, Zhang J, Lian X, Lai Z, Hao Y 2019 Superlattices Microstruct. 133 106179Google Scholar

    [36]

    施敏, 伍国珏 (耿莉, 张瑞智译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第132−133页

    Sze S M, Kwok K N (translated by Geng L, Zhang R) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi'an: Xi'an Jiaotong University Press) pp132−133 (in Chinese)

    [37]

    Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S 2013 IEEE Electron Device Lett. 34 493Google Scholar

    [38]

    Werner J H, Güttler H H 1991 J. Appl. Phys. 69 1522Google Scholar

  • 图 1  (a), (b), (c) 机械剥离氧化镓单晶材料; (d) Au/Ni/β-Ga2O3肖特基二极管结构示意图

    Figure 1.  (a), (b), (c) Mechanically exfoliated beta-Ga2O3 single crystal; (d) schematic cross section of Au/Ni/β-Ga2O3 Schottky barrier diode.

    图 2  肖特基二极管的I-V温度特性曲线 (a) 正向; (b) 反向

    Figure 2.  Temperature dependent I-V characteristic curves of Schottky barrier diode: (a) Forward curves; (b) reverse curves.

    图 3  I-V温度特性曲线提取的 (a) 势垒高度; (b) 理想因子; (c) 阈值电压

    Figure 3.  The parameters from temperature dependent I-V characteristic curves: (a)Barrier height; (b) ideal factor; (c) threshold voltage.

    图 4  不同温度下势垒高度与理想因子依赖关系 (a) Barrier 1; (b) Barrier 2

    Figure 4.  Plot of barrier height as a function of ideal factor obtained at various temperatures: (a) Barrier 1; (b) Barrier 2

    图 5  (a) C-V特性曲线; (b) 频率为100 kHz的1/C 2-V曲线

    Figure 5.  (a) C-V characteristic curves; (b) 1/C 2-V characteristic curve of 100 kHz.

    图 6  300 K温度下的dV/dlnI-V曲线

    Figure 6.  dV/dlnI-V curve at the temperature of 300 K.

    图 7  H(I)-I (a) 温度特性曲线; (b) 不同温度时的串联电阻和势垒高度

    Figure 7.  H(I)-I (a) Temperature dependent curves; (b) the resistance and barrier height at various temperatures.

    图 8  (a) F(V)-V 温度特性曲线; (b) 不同温度时的串联电阻和势垒高度

    Figure 8.  (a) F(V)-V temperature dependent curves; (b) the resistance and barrier height at various temperatures.

    图 9  肖特基二极管的理查孙图

    Figure 9.  Richardson's plot of Schottky barrier diode.

    图 10  (a) $ {\varphi }_{{\rm{a}}{\rm{p}}} -\dfrac{1}{2 kT} $图像; (b) 高斯分布修正后的理查孙图

    Figure 10.  (a) The plot of $ {\varphi }_{{\rm{a}}{\rm{p}}} - \dfrac{1}{2 kT} $; (b) Richardson's plot after Gaussian distribution processing.

    表 1  I-V温度特性曲线提取数据表

    Table 1.  The parameters from temperature dependent I-V characteristic curves.

    温度/K势垒高度/eV理想因子n阈值电压/V
    Barrier 1Barrier 2Barrier 1Barrier 2Barrier 1Barrier 2
    3001.011.081.322.111.021.77
    3231.001.171.741.811.281.64
    3481.081.231.461.711.161.61
    3731.131.251.361.691.111.58
    3981.171.291.371.671.141.59
    4231.221.301.281.651.101.56
    4481.271.321.241.711.091.59
    4731.311.351.191.691.061.58
    DownLoad: CSV

    表 2  H(I)-IF(V)-V曲线提取数据表

    Table 2.  The parameters from H(I)-I curves and F(V)-V curves.

    温度/K势垒高度/eV串联电阻/Ω
    H(I)-IF(V)-VH(I)-IF(V)-V
    3000.971.07386.6212299.25
    3230.931.10136.386184.64
    3481.001.15143.323086.28
    3731.021.19141.791603.53
    3981.041.23150.50838.20
    4231.051.27157.03379.21
    4481.061.29181.14381.55
    4731.081.34189.04157.33
    DownLoad: CSV
  • [1]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [2]

    Montes J, Yang C, Fu H, Yang T H, Fu K, Chen H, Zhou J, Huang X, Zhao Y 2019 Appl. Phys. Lett. 114 162103Google Scholar

    [3]

    Barman S K, Huda M N 2019 Phys. Status Solidi-R. 13 1800554Google Scholar

    [4]

    Qian L X, Wang Y, Wu Z H, Sheng T, Liu X Z 2017 Vacuum 140 106Google Scholar

    [5]

    Wang X, Liu Z, Zhi Y, Li S, Wu Z, Li P, Tang W 2019 Vacuum 166 79Google Scholar

    [6]

    Manandhar S, Battu A K, Devaraj A, Shutthanandan V, Thevuthasan S, Ramana C V 2020 Sci. Rep. 10 178Google Scholar

    [7]

    Yang J, Ren F, Tadjer M, Pearton S, Kuramata A 2018 ECS J. Solid State Sc. 7 Q92Google Scholar

    [8]

    Galazka Z, Irmscher K, Schewski R, Hanke I M, Pietsch M, Ganschow S, Klimm D, Dittmar A, Fiedler A, Schroeder T, Bickermann M 2020 J. Cryst. Growth 529 Unsp 125297

    [9]

    Tang H L, He N T, Zhang H, Liu B, Zhu Z C, Xu M X, Chen L, Liu J L, Ouyang X P, Xu J 2020 Crystengcomm 22 924Google Scholar

    [10]

    Matsuzaki K, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H 2006 Thin Solid Films 496 37Google Scholar

    [11]

    Wang D, He L N, Le Y, Feng X J, Luan C N, Xiao H D, Ma J 2020 Ceram. Int. 46 4568Google Scholar

    [12]

    Matsuzaki K, Yanagi H, Kamiya T, Hiramatsu H, Nomura K, Hirano M, Hosono H 2006 Appl. Phys. Lett. 88 92106Google Scholar

    [13]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [14]

    Konishi K, Goto K, Murakami H, Kumagai Y, Higashiwaki M 2017 Appl. Phys. Lett. 110 103506Google Scholar

    [15]

    Pearton S J, Ren F, Tadjer M, Kim J 2018 J. Appl. Phys. 124 220901Google Scholar

    [16]

    Yao Y, Gangireddy R, Kim J, Das K K, Porter L M 2017 J. Vac. Sci. Technol., B 35 03D113Google Scholar

    [17]

    Cheung S K, Cheung N W 1986 Appl. Phys. Lett. 49 85Google Scholar

    [18]

    Norde H 1979 J. Appl. Phys. 50 5052Google Scholar

    [19]

    He Q, Mu W, Dong H, Long S, Jia Z, Lv H, Liu Q, Tang M, Tao X, Liu M 2017 Appl. Phys. Lett. 110 093503Google Scholar

    [20]

    Ahn S, Ren F, Yuan L, Pearton S J, Kuramata A 2017 ECS J. Solid State Sc. 6 P68Google Scholar

    [21]

    Jian G, He Q, Mu W, Fu B, Dong H, Qin Y, Zhang Y, Xue H, Long S, Jia Z, Lv H, Liu Q, Tao X, Liu M 2018 AIP Adv. 8 015316Google Scholar

    [22]

    Fares C, Ren F, Pearton S J 2018 ECS J. Solid State Sc. 8 Q3007Google Scholar

    [23]

    Reddy P R S, Janardhanam V, Shim K H, Reddy V R, Lee S N, Park S J, Choi C J 2020 Vacuum 171 109012Google Scholar

    [24]

    施敏, 伍国珏(耿莉, 张瑞智译) 2008 半导体器件物理(第3版) (西安: 西安交通大学出版社) 第118−119页

    Sze S M, Kwok K N (translated by Geng L, Zhang R) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi'an: Xi'an Jiaotong University Press) pp118−119 (in Chinese)

    [25]

    Shi J J, Xia X C, Liang H W, Abbas Q, Liu J, Zhang H Q, Liu Y 2019 J. Mater. Sci.-Mater. Electron. 30 3860Google Scholar

    [26]

    Ohdomari I, Tu K N 1980 J. Appl. Phys. 51 3735Google Scholar

    [27]

    Tung R T 1992 Phys. Rev. B 45 13509Google Scholar

    [28]

    Güçlü Ç Ş, Özdemir A F, Altindal Ş 2016 Appl. Phys. A 122 1032.1Google Scholar

    [29]

    Marıl E, Altındal Ş, Kaya A, Koçyiğit S, Uslu İ 2015 Philos. Mag. 95 1049Google Scholar

    [30]

    Garrido-Alzar C L 1997 Renewable Energy 10 4Google Scholar

    [31]

    Janardhanam V, Jyothi I, Sekhar Reddy P R, Cho J, Cho J M, Choi C J, Lee S N, Rajagopal Reddy V 2018 Superlattices Microstruct. 120 508Google Scholar

    [32]

    Jyothi I, Seo M W, Janardhanam V, Shim K H, Lee Y B, Ahn K S, Choi C J 2013 J. Alloys Compd. 556 252Google Scholar

    [33]

    Mönch W 2007 Appl. Phys. A 87 359Google Scholar

    [34]

    Li A, Feng Q, Zhang J, Hu Z, Feng Z, Zhang K, Zhang C, Zhou H, hao Y 2018 Superlattices Microstruct. 119 212Google Scholar

    [35]

    Shen Y, Feng Q, Zhang K, Hu Z, Yan G, Cai Y, Mu W, Jia Z, Zhang C, Zhou H, Zhang J, Lian X, Lai Z, Hao Y 2019 Superlattices Microstruct. 133 106179Google Scholar

    [36]

    施敏, 伍国珏 (耿莉, 张瑞智译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第132−133页

    Sze S M, Kwok K N (translated by Geng L, Zhang R) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi'an: Xi'an Jiaotong University Press) pp132−133 (in Chinese)

    [37]

    Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S 2013 IEEE Electron Device Lett. 34 493Google Scholar

    [38]

    Werner J H, Güttler H H 1991 J. Appl. Phys. 69 1522Google Scholar

  • [1] Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi. Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240186
    [2] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [3] Wu Peng, Zhu Hong-Yu, Wu Jin-Xing, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Low leakage current and high breakdown voltage of AlGaN/GaN Schottky barrier diodes with wet-etching groove anode. Acta Physica Sinica, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [4] Wu Peng, Li Ruo-Han, Zhang Tao, Zhang Jin-Cheng, Hao Yue. Interface-state suppression of AlGaN/GaN Schottky barrier diodes with post-anode-annealing treatment. Acta Physica Sinica, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [5] Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue. Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors. Acta Physica Sinica, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [6] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [8] Wang Hai-Bo, Wan Li-Juan, Fan Min, Yang Jin, Lu Shi-Bin, Zhang Zhong-Xiang. Barrier-tunable gallium oxide Schottky diode. Acta Physica Sinica, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [9] Song Jian-Jun, Zhang Long-Qiang, Chen Lei, Zhou Liang, Sun Lei, Lan Jun-Feng, Xi Chu-Hao, Li Jia-Hao. A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology. Acta Physica Sinica, 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674
    [10] Barrier Tunable Gallium oxide Schottky diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211536
    [11] Li Yu-Chen, Chen Hang-Yu, Song Jian-Jun. Ge Schottky diode for improving energy conversion efficiency of the receiver of microwave wireless power transfer. Acta Physica Sinica, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [12] Du Yuan-Yuan, Zhang Chun-Lei, Cao Xue-Lei. -ray detector based on n-type 4H-SiC Schottky barrier diode. Acta Physica Sinica, 2016, 65(20): 207301. doi: 10.7498/aps.65.207301
    [13] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [14] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [15] Zhai Dong-Yuan, Zhao Yi, Cai Yin-Fei, Shi Yi, Zheng You-Dou. Effect of the trench shape on the electrical properties of silicon based trench barrier schottky diode. Acta Physica Sinica, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [16] Liu Yu-Dong, Du Lei, Sun Peng, Chen Wen-Hao. The effect of electrostatic discharge on the I-V and low frequency noise characterization of Schottky barrier diodes. Acta Physica Sinica, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [17] Yang Li-Xia, Du Lei, Bao Jun-Lin, Zhuang Yi-Qi, Chen Xiao-Dong, Li Qun-Wei, Zhang Ying, Zhao Zhi-Gang, He Liang. The effect of 60Co γ-ray irradiation on the 1/f noise of Schottky barrier diodes. Acta Physica Sinica, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [18] Wang Yan-Xin, Zhang Qi-Feng, Sun Hui, Chang Yan-Ling, Wu Jin-Lei. Fabrication of ZnO nanowire-based diodes and their light-emitting properties. Acta Physica Sinica, 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [19] Guo Da-Bo, Yuan Guang, Song Cui-Hua, Gu Chang-Zhi, Wang Qiang. Field emission of carbon nanotubes. Acta Physica Sinica, 2007, 56(10): 6114-6117. doi: 10.7498/aps.56.6114
    [20] Liu Jie, Hao Yue, Feng Qian, Wang Chong, Zhang Jin-Cheng, Guo Liang-Liang. Characterization of Ni/Au GaN Schottky contact base on I-V-T and C-V-T measurements. Acta Physica Sinica, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
Metrics
  • Abstract views:  6143
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2020
  • Accepted Date:  15 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回