Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation, doping modulation and field emission properties of square-shaped GaN nanowires

Yang Meng-Qi Ji Yu-Hang Liang Qi Wang Chang-Hao Zhang Yue-fei Zhang Ming Wang Bo Wang Ru-Zhi

Citation:

Preparation, doping modulation and field emission properties of square-shaped GaN nanowires

Yang Meng-Qi, Ji Yu-Hang, Liang Qi, Wang Chang-Hao, Zhang Yue-fei, Zhang Ming, Wang Bo, Wang Ru-Zhi
PDF
HTML
Get Citation
  • GaN nanomaterials, as one of the most important third-generation semiconductor materials, have attracted wide attention. In this study, GaN nanowires with square cross section were successfully prepared by microwave plasma chemical vapor deposition system. The diameters of nanowires are from 300 to 500 nm and the lengths from 15 to 20 μm. The results show that the cross section of nanowires could be transformed from triangle into square by adjusting the ratio of Mg to Ga in source materials. X-ray diffraction(XRD)result indicate that the structure of GaN nanowires are agree with the hexagonal wurtzite. X-ray photoelectron spectroscopy (XPS) rusult show that a certain amount of Mg and O impurities incoporated in the square-shaped GaN nanowires. Transmission electron microscopy (TEM) result suggested that square-shaped GaN nanowires had high crystallinity with a growth direction of [$0\bar 110$]. The ratio of source materials- and time-depented growth mechanism was also studied. It was suggested that the transformation of the cross section from triangle to square structure should be derived from the growth mechanism change from vapor-liquid-solid(VLS)process to vapor-solid(VS)process. The doped Mg increased the growth rate of the nanowires sidewalls, which led to a symmetrically growth of GaN nanowires along the twin boundaries. GaN nanowires gradually transformed to square structure by auto-catalytic growth. Moreover, the property of field emission were further investigated. The results showed that the turn-on electric field of square-shaped GaN nanowires was 5.2 V/m and a stable field emission property at high electric field. This research provides a new method for the preparation of square-shaped GaN nanowires and a prospective way for the design and fabrication of novel nano-scale devices.
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    • Funds: National Natural Science Foundation of China (Grant Nos. 11774017, 51761135129)
    [1]

    Han S, Choi I, Lee C R, Jeong K U, Lee S K, Kim J S 2020 ACS Appl. Mater. Inter. 12 970Google Scholar

    [2]

    Guo D X, Wang X F, Wang H, Song W D, Chen H, Qi M Y, Luo X J, Luo X, Li G, Qin G G, Li S T 2018 ACS Photonics 5 4810Google Scholar

    [3]

    Ko S M, Hur J, Lee C, Isnaeni, Gong S H, Kim M, Cho Y H 2020 Sci. Rep. 10 358Google Scholar

    [4]

    邓长发, 燕少安, 王冬, 彭金峰, 郑学军 2019 物理学报 68 237304Google Scholar

    Deng C F, Yan S A, Wang D, Peng J F, Zheng X J 2019 Acta Phys. Sin. 68 237304Google Scholar

    [5]

    Liu B, Hu T, Wang Z, Liu L, Qin F, Huang N, Jiang X 2012 Cryst. Res. Technol. 47 207Google Scholar

    [6]

    Sahoo P, Dhara S, Amirthapandian S, Kamruddin M 2013 J Mater. Chem. C 1 7237Google Scholar

    [7]

    Johar M A, Song H G, Waseem A, Hassan M A, Bagal I V, Cho Y H, Ryu S W 2020 Appl. Mater. Today 19 100541Google Scholar

    [8]

    Liao H, Wei T T, Zong H, Jiang S X, Li J C, Yang Y, Yu G, Wen P J, Lang R, Wang W J, Hu X D 2019 Appl. Surf. Sci. 489 346Google Scholar

    [9]

    Morassi M, Guan N, Dubrovskii V G, Berdnikov Y, Barbier C, Mancini L, Largeau L, Babichev A V, Kumaresan V, Julien F H, Travers L, Gogneau N, Harmand J C, Tchernycheva M 2019 Cryst. Growth Des. 20 552

    [10]

    Treeck D v, Garrido S F, Geelhaar L 2020 Phys. Rev. Mater. 4 013404Google Scholar

    [11]

    Sun J M, Han M M, Gu Y, Yang Z X, Zeng H B 2018 Adv. Optical Mater. 6 1800256Google Scholar

    [12]

    赵军伟, 张跃飞, 宋雪梅, 严辉, 王如志 2014 物理学报 63 117702Google Scholar

    Zhao J W, Zhang Y F, Song X M, Yan H, Wang R Z 2014 Acta Phys. Sin. 63 117702Google Scholar

    [13]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [14]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth Des. 19 2687Google Scholar

    [15]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [16]

    Bernal R A, Agrawal R, Peng B, Bertness K A, Sanford N A 2011 Nano Lett. 11 548Google Scholar

    [17]

    Pozina G, Gubaydullin A R, Mitrofanov M I, Kaliteevski M A, Levitskii I V, Voznyuk G V, Tatarinov E E 2018 Sci. Rep. 8 7218Google Scholar

    [18]

    Ross F M, Tersoff J, Reuter M C 2005 Phys. Rev. Lett. 95 146104Google Scholar

    [19]

    Gholampour M, Abdollah-zadeh A, Poursalehi R, Shekari L 2014 Mater. Lett. 120 136Google Scholar

    [20]

    Srivastava P, Kumar A, Jaiswal N K, Sharma V 2016 Proceeding of International Conference on Condensed Matter and Applied Physics Bikaner, INDIA, OCT 30–31, 2015 p020071

    [21]

    Srivastava P, Kumar A, Jaiswal N K, Sharma V 2016 Phys. Status Solidi B 253 2185Google Scholar

    [22]

    Wang Y Q, Wang R Z, Zhu M K, Wang B B, Yan H 2013 Appl. Surf. Sci. 285 115Google Scholar

    [23]

    Liu B D, Bando Y, Tang C C, Xu F F 2005 J. Phys. Chem. B 109 21521Google Scholar

    [24]

    Li E L, Wu B, Lv S T, Cui Z, Ma D M, Shi W 2016 J. Alloy. Compd. 681 324Google Scholar

    [25]

    Xia S H, Liu L, Diao Y, Feng S 2017 J. Appl. Phys. 122 135102Google Scholar

    [26]

    Pan C J, Chi G C 1999 Solid State Electron. 43 621Google Scholar

    [27]

    Jaud A, Auvray L, Kahouli A, Abi-Tannous T, Cauwet F, Ferro G, Brylinski C 2017 Phys. Status Solidi A 214 1600428Google Scholar

    [28]

    Bae S Y, Lekhal K, Lee H J, Min J W, Lee D S, Honda Y, Amano H 2017 Phy. Status Solidi B 254 1600722Google Scholar

    [29]

    Kamimura J, Bogdanoff P, Ramsteiner M, Corfdir P, Feix F, Geelhaar L, Riechert H 2017 Nano Lett. 17 1529Google Scholar

    [30]

    Siladie A M, Amichi L, Mollard N, Mouton I, Bonef B, Bougerol C, Grenier A, Robin E, Jouneau P H, Garro N, Cros A, Daudin B 2018 Nanotechnology 29 255706Google Scholar

    [31]

    Miceli G, Pasquarello A 2016 Phys.l Rev. B 93 165207Google Scholar

    [32]

    Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K, Wang B B, Yan H 2013 CrystEngComm 15 1626Google Scholar

    [33]

    Lymperakis L, Neugebauer J 2009 Phys. Rev. B 79 241308Google Scholar

    [34]

    Limbach F, Caterino R, Gotschke T, Stoica T, Calarco R, Geelhaar L, Riechert H 2012 AIP Advances 2 012157Google Scholar

    [35]

    Nayak S, Kumar R, Pandey N, Nagaraja K K, Gupta M, Shivaprasad S M 2018 J. Appl. Phys. 123 135303Google Scholar

    [36]

    Park J B, Kim N J, Kim Y J, Lee S H, Yi G C 2014 Curr. Appl. Phys. 14 1437Google Scholar

    [37]

    Ji Y H, Wang R Z, Yang M Q, Feng X Y, Zhang Y F, Huang A P, Yang L X, Liu Y Q, Yan Y Z, Yan H 2020 J. Phys. Chem. C 124 6725Google Scholar

    [38]

    Li Z J, Li W D, Wang X L, Zhang M 2014 Phys. Status Solidi A 211 1550Google Scholar

    [39]

    Consonni V, Knelangen M, Geelhaar L, Trampert A, Riechert H 2010 Phys. Rev. B 81 085310Google Scholar

    [40]

    Zhang D D, Xue C S, Zhuang H Z, Sun H B, Cao Y P, Huang Y L, Wang Z P, Wang Y 2009 Chemphyschem 10 571Google Scholar

    [41]

    Shi F, Huang Y L, Xue C S 2011 J. Exp. Nanosci. 6 174Google Scholar

    [42]

    Rackauskas S, Jiang H, Wagner J B, Shandakov S D, Hansen T W, Kauppinen E I, Nasibulin A G 2014 Nano Lett. 14 5810Google Scholar

    [43]

    Gamalski A D, Voorhees P W, Ducati C, Sharma R, Hofmann S 2014 Nano Lett. 14 1288Google Scholar

    [44]

    Boukhicha R, Gardès C, Vincent L, Renard C, Yam V, Fossard F, Patriarche G, Jabeen F, Bouchier D 2011 EPL 95 18004Google Scholar

    [45]

    Ngo T H, Gil B, Shubina T V, Damilano B, Vezian S, Valvin P, Massies J 2018 Sci. Rep. 8 15767Google Scholar

    [46]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301Google Scholar

    [47]

    Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B, Schlotter P 1998 Appl. Phys. Lett. 72 1326Google Scholar

    [48]

    Stoica T, Calarco R 2011 IEEE J. Sel. Top. Quant. 17 859Google Scholar

    [49]

    Das S N, Patra S, Kar J P, Lee M J, Hwang S H, Lee T I, Myoung J M 2013 Mater. Lett. 106 352Google Scholar

    [50]

    Bayel M W, Brandt M S, Glaser E R, Wickenden A E, D. K D, Henry R L, Stutzmann M 1999 Phys. Ptat. Pol. B 216 547

    [51]

    Glaser E R, Carlos W E, Braga G C B 2002 Phys. Rev. B 65 085312Google Scholar

    [52]

    Wang R Z, Zhao W, Yan H 2017 Sci. Rep. 7 43625Google Scholar

    [53]

    Li W D, Zhang M, Li Y, Liu G X, Li Z J 2019 CrystEngComm 21 3993Google Scholar

    [54]

    Zhao W, Wang R Z, Song Z W, Wang H, Yan H, Chu P K 2013 J. Physl. Chem. C 117 1518Google Scholar

    [55]

    Vayssieres L, Graetzel M 2004 Angew. Chem. Int. Ed. Engl. 43 3666Google Scholar

    [56]

    Diao Y, Liu L, Xia S H, Feng S, Lu F F 2018 Superlattice Microst. 115 140Google Scholar

    [57]

    Wang Z, Chen Y H, Ye X L 2004 13th International Conference on Semiconducting and Insulating Materials Beijing, China, Sep. 20–25, 2004 pp57–60

  • 图 1  不同原料配比制备Mg掺杂GaN纳米线的FESEM图 (a)样品A-a; (b)样品A-b; (c)样品A-c; (d)样品A-d; (e)样品A-e

    Figure 1.  FESEM images Mg doped GaN nanowires prepared at different source materials ratio. (a) Sample A-a; (b) sample A-b; (c) sample A-c; (d) sample A-d; (e) sample A-e.

    图 2  不同生长时间制备Mg掺杂GaN纳米线的FESEM图 (a)样品B-a; (b)样品B-b; (c)样品B-c; (d)样品B-d

    Figure 2.  FESEM images Mg doped GaN nanowires prepared at different growth times. (a) Sample B-a; (b) sample B-b; (c) sample B-c; (d) sample B-d.

    图 3  样品A-e的XRD图谱

    Figure 3.  XRD spectra of sample A-e.

    图 4  样品A-e的XPS图谱

    Figure 4.  XPS spectra of sample A-e.

    图 5  样品A-e的(a) TEM图; (b) HRTEM图插图为样品A-e的SAED图

    Figure 5.  (a) TEM image; (b) HRTEM image and SAED pattern (inset) of sample A-e.

    图 6  四方结构GaN纳米线的成核和生长过程示意图

    Figure 6.  Schematic diagram of nucleation and growth for square-shaped GaN nanowires.

    图 7  (a)样品A-a及样品A-e的PL图谱;(b)样品A-e的带隙分析图

    Figure 7.  (a) PL spectra of sample A-a and sample A-e; (b) band gap analysis spectra of sample A-e.

    图 8  样品A-a及样品A-e的(a) J-E曲线; (b) F-N曲线

    Figure 8.  (a) J-E curves; (b) F-N curves of sample A-a and sample A-e.

    表 1  不同原料配比制备Mg掺杂GaN纳米线的实验参数

    Table 1.  The experimental parameter of preparing Mg doped GaN nanowiresat different source materials ratio.

    编号N2/sccm气压/TorrT/℃t/min微波功率/WC∶Ga2O3∶MgO
    A-a13108703030012∶1∶0
    A-b13108703030012:1:0.2
    A-c13108703030012∶1∶0.5
    A-d13108703030012∶1∶1
    A-e13108703030012∶1∶1.5
    DownLoad: CSV

    表 2  不同生长时间制备Mg掺杂GaN纳米线的实验参数

    Table 2.  The experimental parameter of preparing Mg doped GaN nanowiresat different growth time.

    编号N2/sccm气压/TorrT/℃t/min微波功率/WC∶Ga2O3∶MgO
    B-a13108701030012∶1∶1.5
    B-b13108702030012∶1∶1.5
    B-c13108703030012∶1∶1.5
    B-d13108704030012∶1∶1.5
    DownLoad: CSV
  • [1]

    Han S, Choi I, Lee C R, Jeong K U, Lee S K, Kim J S 2020 ACS Appl. Mater. Inter. 12 970Google Scholar

    [2]

    Guo D X, Wang X F, Wang H, Song W D, Chen H, Qi M Y, Luo X J, Luo X, Li G, Qin G G, Li S T 2018 ACS Photonics 5 4810Google Scholar

    [3]

    Ko S M, Hur J, Lee C, Isnaeni, Gong S H, Kim M, Cho Y H 2020 Sci. Rep. 10 358Google Scholar

    [4]

    邓长发, 燕少安, 王冬, 彭金峰, 郑学军 2019 物理学报 68 237304Google Scholar

    Deng C F, Yan S A, Wang D, Peng J F, Zheng X J 2019 Acta Phys. Sin. 68 237304Google Scholar

    [5]

    Liu B, Hu T, Wang Z, Liu L, Qin F, Huang N, Jiang X 2012 Cryst. Res. Technol. 47 207Google Scholar

    [6]

    Sahoo P, Dhara S, Amirthapandian S, Kamruddin M 2013 J Mater. Chem. C 1 7237Google Scholar

    [7]

    Johar M A, Song H G, Waseem A, Hassan M A, Bagal I V, Cho Y H, Ryu S W 2020 Appl. Mater. Today 19 100541Google Scholar

    [8]

    Liao H, Wei T T, Zong H, Jiang S X, Li J C, Yang Y, Yu G, Wen P J, Lang R, Wang W J, Hu X D 2019 Appl. Surf. Sci. 489 346Google Scholar

    [9]

    Morassi M, Guan N, Dubrovskii V G, Berdnikov Y, Barbier C, Mancini L, Largeau L, Babichev A V, Kumaresan V, Julien F H, Travers L, Gogneau N, Harmand J C, Tchernycheva M 2019 Cryst. Growth Des. 20 552

    [10]

    Treeck D v, Garrido S F, Geelhaar L 2020 Phys. Rev. Mater. 4 013404Google Scholar

    [11]

    Sun J M, Han M M, Gu Y, Yang Z X, Zeng H B 2018 Adv. Optical Mater. 6 1800256Google Scholar

    [12]

    赵军伟, 张跃飞, 宋雪梅, 严辉, 王如志 2014 物理学报 63 117702Google Scholar

    Zhao J W, Zhang Y F, Song X M, Yan H, Wang R Z 2014 Acta Phys. Sin. 63 117702Google Scholar

    [13]

    Ji Y H, Wang R Z, Feng X Y, Zhang Y F, Yan H 2017 J. Phys. Chem. C 121 24804Google Scholar

    [14]

    Feng X Y, Wang R Z, Liang Q, Ji Y H, Yang M Q 2019 Cryst. Growth Des. 19 2687Google Scholar

    [15]

    Zhao J W, Zhang Y F, Li Y H, Su C H, Song X M, Yan H, Wang R Z 2015 Sci. Rep. 5 17692Google Scholar

    [16]

    Bernal R A, Agrawal R, Peng B, Bertness K A, Sanford N A 2011 Nano Lett. 11 548Google Scholar

    [17]

    Pozina G, Gubaydullin A R, Mitrofanov M I, Kaliteevski M A, Levitskii I V, Voznyuk G V, Tatarinov E E 2018 Sci. Rep. 8 7218Google Scholar

    [18]

    Ross F M, Tersoff J, Reuter M C 2005 Phys. Rev. Lett. 95 146104Google Scholar

    [19]

    Gholampour M, Abdollah-zadeh A, Poursalehi R, Shekari L 2014 Mater. Lett. 120 136Google Scholar

    [20]

    Srivastava P, Kumar A, Jaiswal N K, Sharma V 2016 Proceeding of International Conference on Condensed Matter and Applied Physics Bikaner, INDIA, OCT 30–31, 2015 p020071

    [21]

    Srivastava P, Kumar A, Jaiswal N K, Sharma V 2016 Phys. Status Solidi B 253 2185Google Scholar

    [22]

    Wang Y Q, Wang R Z, Zhu M K, Wang B B, Yan H 2013 Appl. Surf. Sci. 285 115Google Scholar

    [23]

    Liu B D, Bando Y, Tang C C, Xu F F 2005 J. Phys. Chem. B 109 21521Google Scholar

    [24]

    Li E L, Wu B, Lv S T, Cui Z, Ma D M, Shi W 2016 J. Alloy. Compd. 681 324Google Scholar

    [25]

    Xia S H, Liu L, Diao Y, Feng S 2017 J. Appl. Phys. 122 135102Google Scholar

    [26]

    Pan C J, Chi G C 1999 Solid State Electron. 43 621Google Scholar

    [27]

    Jaud A, Auvray L, Kahouli A, Abi-Tannous T, Cauwet F, Ferro G, Brylinski C 2017 Phys. Status Solidi A 214 1600428Google Scholar

    [28]

    Bae S Y, Lekhal K, Lee H J, Min J W, Lee D S, Honda Y, Amano H 2017 Phy. Status Solidi B 254 1600722Google Scholar

    [29]

    Kamimura J, Bogdanoff P, Ramsteiner M, Corfdir P, Feix F, Geelhaar L, Riechert H 2017 Nano Lett. 17 1529Google Scholar

    [30]

    Siladie A M, Amichi L, Mollard N, Mouton I, Bonef B, Bougerol C, Grenier A, Robin E, Jouneau P H, Garro N, Cros A, Daudin B 2018 Nanotechnology 29 255706Google Scholar

    [31]

    Miceli G, Pasquarello A 2016 Phys.l Rev. B 93 165207Google Scholar

    [32]

    Wang Y Q, Wang R Z, Li Y J, Zhang Y F, Zhu M K, Wang B B, Yan H 2013 CrystEngComm 15 1626Google Scholar

    [33]

    Lymperakis L, Neugebauer J 2009 Phys. Rev. B 79 241308Google Scholar

    [34]

    Limbach F, Caterino R, Gotschke T, Stoica T, Calarco R, Geelhaar L, Riechert H 2012 AIP Advances 2 012157Google Scholar

    [35]

    Nayak S, Kumar R, Pandey N, Nagaraja K K, Gupta M, Shivaprasad S M 2018 J. Appl. Phys. 123 135303Google Scholar

    [36]

    Park J B, Kim N J, Kim Y J, Lee S H, Yi G C 2014 Curr. Appl. Phys. 14 1437Google Scholar

    [37]

    Ji Y H, Wang R Z, Yang M Q, Feng X Y, Zhang Y F, Huang A P, Yang L X, Liu Y Q, Yan Y Z, Yan H 2020 J. Phys. Chem. C 124 6725Google Scholar

    [38]

    Li Z J, Li W D, Wang X L, Zhang M 2014 Phys. Status Solidi A 211 1550Google Scholar

    [39]

    Consonni V, Knelangen M, Geelhaar L, Trampert A, Riechert H 2010 Phys. Rev. B 81 085310Google Scholar

    [40]

    Zhang D D, Xue C S, Zhuang H Z, Sun H B, Cao Y P, Huang Y L, Wang Z P, Wang Y 2009 Chemphyschem 10 571Google Scholar

    [41]

    Shi F, Huang Y L, Xue C S 2011 J. Exp. Nanosci. 6 174Google Scholar

    [42]

    Rackauskas S, Jiang H, Wagner J B, Shandakov S D, Hansen T W, Kauppinen E I, Nasibulin A G 2014 Nano Lett. 14 5810Google Scholar

    [43]

    Gamalski A D, Voorhees P W, Ducati C, Sharma R, Hofmann S 2014 Nano Lett. 14 1288Google Scholar

    [44]

    Boukhicha R, Gardès C, Vincent L, Renard C, Yam V, Fossard F, Patriarche G, Jabeen F, Bouchier D 2011 EPL 95 18004Google Scholar

    [45]

    Ngo T H, Gil B, Shubina T V, Damilano B, Vezian S, Valvin P, Massies J 2018 Sci. Rep. 8 15767Google Scholar

    [46]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301Google Scholar

    [47]

    Kaufmann U, Kunzer M, Maier M, Obloh H, Ramakrishnan A, Santic B, Schlotter P 1998 Appl. Phys. Lett. 72 1326Google Scholar

    [48]

    Stoica T, Calarco R 2011 IEEE J. Sel. Top. Quant. 17 859Google Scholar

    [49]

    Das S N, Patra S, Kar J P, Lee M J, Hwang S H, Lee T I, Myoung J M 2013 Mater. Lett. 106 352Google Scholar

    [50]

    Bayel M W, Brandt M S, Glaser E R, Wickenden A E, D. K D, Henry R L, Stutzmann M 1999 Phys. Ptat. Pol. B 216 547

    [51]

    Glaser E R, Carlos W E, Braga G C B 2002 Phys. Rev. B 65 085312Google Scholar

    [52]

    Wang R Z, Zhao W, Yan H 2017 Sci. Rep. 7 43625Google Scholar

    [53]

    Li W D, Zhang M, Li Y, Liu G X, Li Z J 2019 CrystEngComm 21 3993Google Scholar

    [54]

    Zhao W, Wang R Z, Song Z W, Wang H, Yan H, Chu P K 2013 J. Physl. Chem. C 117 1518Google Scholar

    [55]

    Vayssieres L, Graetzel M 2004 Angew. Chem. Int. Ed. Engl. 43 3666Google Scholar

    [56]

    Diao Y, Liu L, Xia S H, Feng S, Lu F F 2018 Superlattice Microst. 115 140Google Scholar

    [57]

    Wang Z, Chen Y H, Ye X L 2004 13th International Conference on Semiconducting and Insulating Materials Beijing, China, Sep. 20–25, 2004 pp57–60

  • [1] Ye Yun, Chen Tian-Yuan, Guo Tai-Liang, Jiang Ya-Dong. Effect of magnetic field assisted heat-treatment on field emission properties of metalized multi-walled carbon nanotubes cathodes. Acta Physica Sinica, 2014, 63(8): 086802. doi: 10.7498/aps.63.086802
    [2] Hu Xiao-Ying, Wang Shu-Min, Pei Yan-Hui, Tian Hong-Wei, Zhu Pin-Wen. One-step synthesis of a carbon nano sheet-scarbon nanotubes composite and its field emission properties. Acta Physica Sinica, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [3] Wang Jing, Wang Ru-Zhi, Zhao Wei, Chen Jian, Wang Bo, Yan Hui. Field emission properties of silicon doped AlGaN thin film. Acta Physica Sinica, 2013, 62(1): 017702. doi: 10.7498/aps.62.017702
    [4] Wang Xin, Wang Fa-Zhan, Lei Zhe-Feng, Wang Bo, Ma Shan, Wang Zhe, Wu Zhen. First-principles study of field emission properties for ZnO nanotuber capped and codoped with N-M(Cd, Mg). Acta Physica Sinica, 2013, 62(12): 123101. doi: 10.7498/aps.62.123101
    [5] Chen Cheng-Cheng, Liu Li-Ying, Wang Ru-Zhi, Song Xue-Mei, Wang Bo, Yan Hui. Preparation of nanostructured GaN films and their field emission enhancement for different substrates. Acta Physica Sinica, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [6] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [7] Zhang Pei-Zeng, Li Rui-Shan, Xie Er-Qing, Yang Hua, Wang Xuan, Wang Tao, Feng You-Cai. The fabrication and field emission properties of ZnO nanoparticles-doped diamond-like carbon films by electrochemical deposition. Acta Physica Sinica, 2012, 61(8): 088101. doi: 10.7498/aps.61.088101
    [8] Wu Zhi-Guo, Zhang Peng-Ju, Xu Liang, Li Shuan-Kui, Wang Jun, Li Xu-Dong, Yan Peng-Xun. Field emission properties of amorphous carbon nanodot arrays in a novel anodic aluminum oxide template by self-assembly technique. Acta Physica Sinica, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [9] Yang Yan-Ning, Zhang Zhi-Yong, Zhang Fu-Chun, Zhang Wei-Hu, Yan Jun-Feng, Zhai Chun-Xue. Temperature dependence of field emission of nano-diamond. Acta Physica Sinica, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [10] Qin Yu-Xiang, Hu Ming. Field emission properties of titanium carbide-modified carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [11] Zheng Xin-Liang, Li Guang-Shan, Zhong Shou-Xian, Tian Jin-Shou, Li Zhen-Hong, Ren Zhao-Yu. Ablating of carbon nanotube by laser beam and its effect on field emission performance. Acta Physica Sinica, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [12] Wang Xin-Qing, Li Liang, Chu Ning-Jie, Jin Hong-Xiao, Ge Hong-Liang. Theoretical optimization for field emission current density from carbon nanotubes array. Acta Physica Sinica, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [13] Luo Min, Wang Xin-Qing, Ge Hong-Liang, Wang Miao, Xu Ya-Bo, Chen Qiang, Li Li-Pei, Chen Lei, Guan Gao-Fei, Xia Juan, Jiang Feng. Influence of arrangement and matrix number on the field emission from conductive nanowire array. Acta Physica Sinica, 2006, 55(11): 6061-6067. doi: 10.7498/aps.55.6061
    [14] Hu Li-Qin, Lin Zhi-Xian, Guo Tai-Liang, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Field-emission properties of aligned and unaligned In2O3 nanowires. Acta Physica Sinica, 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [15] Li Qiang, Liang Er-Jun. Comparison of field emission of carbon, carbon nitride and boron carbon nitride nanotubes. Acta Physica Sinica, 2005, 54(12): 5931-5936. doi: 10.7498/aps.54.5931
    [16] Wang Xin-Qing, Wang Miao, Li Zhen-Hua, Yang Bing, Wang Feng-Fei, He Pi-Mo, Xu Ya-Bo. Calculation of the enhancement factor for the individual conductive nanowire in field emission. Acta Physica Sinica, 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [17] Song Jiao-Hua, Zhang Geng-Min, Zhang Zhao-Xiang, Sun Ming-Yan, Xue Zeng-Quan. A study of field emission of an array of multi-walled carbon nanotubes*. Acta Physica Sinica, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [18] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [19] Zhang Zhao-Xiang, Zhang Geng-Min, Hou Shi-Min, Zhang Hao, Gu Zhen-Nan, Liu Wei-Min, Zhao Xing-Yu, Xue Zeng-Quan. FEM study on the influence of oxygen on field emission of singlewalled carbon nanotubes. Acta Physica Sinica, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [20] SUN JIAN-PING, ZHANG ZHAO-XIANG, HOU SHI-MIN, ZHAO XING-YU, SHI ZU-JIN, GU ZHEN-NAN, LIU WEI-MIN, XUE ZENG-QUAN. A STUDY OF FIELD EMISSION OF SINGLE-WALLED CARBONNANOTUBES USING FIELD EMISSION MICROSCOPY. Acta Physica Sinica, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
Metrics
  • Abstract views:  6509
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2020
  • Accepted Date:  07 May 2020
  • Available Online:  15 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回