Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on negative curvature terahertz fiber based on nested triangle structure cladding

Meng Miao Yan De-Xian Li Jiu-Sheng Sun Shuai

Citation:

Research on negative curvature terahertz fiber based on nested triangle structure cladding

Meng Miao, Yan De-Xian, Li Jiu-Sheng, Sun Shuai
PDF
HTML
Get Citation
  • In the terahertz communication and imaging systems, terahertz fibers have aroused great interest in the past several years. Countering the terahertz wave applications ‘inefficient transmission’ calls for a rapid development in terahertz fibers that could achieve low confinement loss, chromatic dispersion and large refraction of power at the same time. In this paper, a new type of negative curvature terahertz fiber is designed, which consists of six cladding tubes evenly distributed in the cladding and nested with equilateral triangle structure. By using full vector finite element method and changing the thickness of cladding tube and triangle, the effective mode field area, core power ratio, confinement loss, dispersion and other parameters of negative curvature fiber are studied. Here, the thickness range of 70–100 μm is selected. It is found that the confinement loss of optical fiber can reach 0.005 dB/cm at 2.36 THz, the dispersion coefficient can float up and down at ±0.1 ps/(THz·cm) at the frequency range of 2.1–2.8 THz, the core power ratio can reach above 99% in the same frequency range. Compared with the known terahertz negative curvature fiber, the nested triangle negative curvature fiber has lower confinement loss and wide transmission bandwidth of 2.1–2.8 THz. After that, when the cladding tube and the triangle thickness are kept at 90 μm, the bending degree of the triangle edge is changed, and the above properties are further studied. When the triangle edge is bent in and out, the transmission performance of the fiber is analyzed. It is found that when the triangle edge is bent inward, the transmission characteristics of terahertz wave is much better than that when the triangle edge is bent outward. When the triangle edge is bent inwards, the confinement loss is obviously reduced, reaching 0.002 dB/cm at 2.36 THz. Compared with triangle straight edge, the confinement loss is reduced by 40% and still maintaining 99% core power ratio at certain frequency band. The designed terahertz fiber will have an important application value in the fields of sensing and imaging systems with low loss and wide bandwidth. This makes the Topas COC-based terahertz fiber very suitable for guiding terahertz wave over the desired frequency range.
      Corresponding author: Yan De-Xian, yandexian1991@cjlu.edu.cn
    [1]

    Yan D X, Wang Y Y, Xu D G, Liu P X, Yan C, Shi J, Liu H X, He Y X, Tang L H, Feng J C, Guo J Q, Shi W, Zhong K, Tsang Y H, Yao J Q 2017 Photon. Res. 5 82Google Scholar

    [2]

    Yan D X, Zhang H W, Xu D G, Shi W, Yan C, Liu P X, Shi J, Yao J Q 2016 J. Lightwave Techonl. 34 3373Google Scholar

    [3]

    Li J S, Zouhdi S 2012 IEEE Photon. Technol. Lett. 24 625Google Scholar

    [4]

    Li J S, Li H, Zhang L 2015 IEEE Trans. Thz. Sci. Techn. 5 551Google Scholar

    [5]

    Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar

    [6]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [7]

    Li J S 2017 Opt. Express 25 19422Google Scholar

    [8]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [9]

    熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清 2017 物理学报 66 094204Google Scholar

    Xiong M J, Li J Y, Luo X, Shen X, Peng J G, Li H Q 2017 Acta Phys. Sin. 66 094204Google Scholar

    [10]

    Yan D X, Li J S 2019 Optik 180 824Google Scholar

    [11]

    Chen H B, Wang H, Hou H L, Chen D R 2012 Opt. Commun. 285 3726Google Scholar

    [12]

    Poletti F 2014 Opt. Express 22 23807Google Scholar

    [13]

    Habib M S, Bang O, Bache M 2015 Opt. Express 23 17394Google Scholar

    [14]

    Belardi W, Knight J C 2014 Opt. Lett. 39 1853Google Scholar

    [15]

    Vincetti L, Setti V, Zoboli M 2010 IEEE Photonics Technol. Lett. 22 972Google Scholar

    [16]

    Wang Y Y, Couny F, Roberts P J, Benabid F 2010 Conference on Lasers and Electro-Optics, San Jose, California, United States, 16–21 May, 2010, pCPDB4

    [17]

    Setti V, Vincetti L, Argyros A 2013 Opt. Express 21 3388Google Scholar

    [18]

    Cruz A L S, Serrao V A, Barbosa C L, Franco M A R,Cordeiro M B C,Argyros A,Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI-45

    [19]

    Sultana J, Islam M S, Cordeiro C M B, Dinovitser A, Kaushik M, Ng Brian W H, Abbott D 2020 Fibers 8 14Google Scholar

    [20]

    Yan D X, Zhang H W, Xu D G, Shi W, Yan C, Liu P X, Shi J, Yao J Q 2016 Journal of Lightwave Technology 34 3373

    [21]

    张果, 孙帅, 张尧, 盛泉, 史伟, 姚建铨 2019 红外与激光工程 49 118Google Scholar

    Zhang G, Sun S, Zhang Y, Sheng Q, Shi W, Yao J Q 2019 Infrared and Laser Engineering. 49 118Google Scholar

    [22]

    Liu H, Wang Y, Xu D, et al. 2017 J. Phys. D Appl. Phys. 50 375103Google Scholar

    [23]

    Wu Z Q, Zhou X Y, Shi Z H, Xia H D, Huang J, Jiang X D, Wu W D 2016 Opt. Eng. 55 037105Google Scholar

    [24]

    Habib M A, Anower M S, Abdulrazak L F, Reza M S 2019 Opt. Fiber Technol. 52 101933Google Scholar

    [25]

    魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 物理学报 68 114209Google Scholar

    Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar

    [26]

    Zhang L, Ren G J, Yao J Q 2013 Optoelectron. Lett. 9 438Google Scholar

    [27]

    陈翔, 胡雄伟, 李进延 2019 激光与光电子学进展 56 050602Google Scholar

    Chen X, Hu X W, Li J Y 2019 Laser & Optoelectronics Progress 56 050602Google Scholar

    [28]

    Wu Z Q, Shi Z H, Xia H D, Zhou X Y, Deng Q H, Huang J, Jiang X D, Wu W D 2016 IEEE Photon. J. 8 1Google Scholar

    [29]

    Bikash K P, Kawsar A 2019 Opt. Fiber Technol. 53 102031Google Scholar

    [30]

    崔莉, 赵建林, 张晓娟, 杨德兴 2008 光学学报 28 1172Google Scholar

    Cui L, Zhao J L, Zhang X J, Yang D X 2008 Acta Optica Sinica 28 1172Google Scholar

    [31]

    姬江军, 孔德鹏, 马天, 何晓阳, 陈琦, 王丽莉 2014 红外与激光工程 43 1909Google Scholar

    Jiang J J, Kong D P, Ma T, He X Y, Chen Q, Wang L L 2014 Infrared and Laser Engineering 43 1909Google Scholar

    [32]

    Belardi W, C. Knight J 2013 Opt. Express 21 21912Google Scholar

  • 图 1  嵌套三角形结构负曲率空芯光纤结构图

    Figure 1.  Structure of negative curvature hollow core fiber with nested triangle structure.

    图 2  (a)限制损耗; (b)色散特性; (c)有效模场面积; (d)纤芯功率比随频率的变化曲线

    Figure 2.  (a) Confinement loss; (b) dispersion characteristics; (c) effective mode field area; (d)core power ratio versus frequency.

    图 3  光纤模场分布 (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz

    Figure 3.  Fiber mode field distribution. (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz.

    图 4  外弯曲负曲率光纤结构图

    Figure 4.  Structure diagram of external bending negative curvature fiber.

    图 5  (a)限制损耗; (b)色散特性; (c)有效模场面积; (d)纤芯功率比随频率的变化曲线

    Figure 5.  (a)confinement loss; (b) dispersion characteristics; (c) effective mode field area; (d) power ratio curve with frequency.

    图 6  外弯曲光纤模场在不同频率时的分布 (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz

    Figure 6.  The distribution of mode field of external bending fiber at different frequencies. (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz.

    图 7  内弯曲负曲率光纤结构图

    Figure 7.  Internal bending negative curvature fiber structure diagram.

    图 8  (a)限制损耗; (b)色散特性; (c)有效模场面积; (d)纤芯功率比随频率的变化曲线

    Figure 8.  (a)confinement loss; (b) dispersion characteristics; (c) effective mode field area; (d) power ratio curve with frequency.

    图 9  内弯曲光纤模场在不同频率时的分布 (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz

    Figure 9.  The distribution of mode field of internal bending fiber at different frequencies. (a) 2.0 THz; (b) 2.2 THz; (c) 2.4 THz; (d) 2.6 THz; (e) 2.8 THz.

    表 1  设计的光纤结构与其他结构的性能对比

    Table 1.  Performance comparison between the designed optical fiber structure and other structures.

    参考文献光纤结构频率/THz纤芯功率比/%限制损耗/dB·cm–1色散/ps·(THz·cm)–1Aeff/m2
    [17]电介质管包层0.8280.16
    [18]三角形包层0.21—0.3950.66
    [19]夹杂金属丝包层1.0990.000 058
    本文直边2.1—2.8990.005–0.19—0.191.5 × 10–6
    外弯曲2.06—2.62990.003–0.19—0.191.04 × 10–6
    内弯曲2.22—2.48990.002–0.02—0.21.08 × 10–6
    DownLoad: CSV
  • [1]

    Yan D X, Wang Y Y, Xu D G, Liu P X, Yan C, Shi J, Liu H X, He Y X, Tang L H, Feng J C, Guo J Q, Shi W, Zhong K, Tsang Y H, Yao J Q 2017 Photon. Res. 5 82Google Scholar

    [2]

    Yan D X, Zhang H W, Xu D G, Shi W, Yan C, Liu P X, Shi J, Yao J Q 2016 J. Lightwave Techonl. 34 3373Google Scholar

    [3]

    Li J S, Zouhdi S 2012 IEEE Photon. Technol. Lett. 24 625Google Scholar

    [4]

    Li J S, Li H, Zhang L 2015 IEEE Trans. Thz. Sci. Techn. 5 551Google Scholar

    [5]

    Li J S, Xu D G, Yao J Q 2010 Appl. Opt. 49 4494Google Scholar

    [6]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [7]

    Li J S 2017 Opt. Express 25 19422Google Scholar

    [8]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [9]

    熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清 2017 物理学报 66 094204Google Scholar

    Xiong M J, Li J Y, Luo X, Shen X, Peng J G, Li H Q 2017 Acta Phys. Sin. 66 094204Google Scholar

    [10]

    Yan D X, Li J S 2019 Optik 180 824Google Scholar

    [11]

    Chen H B, Wang H, Hou H L, Chen D R 2012 Opt. Commun. 285 3726Google Scholar

    [12]

    Poletti F 2014 Opt. Express 22 23807Google Scholar

    [13]

    Habib M S, Bang O, Bache M 2015 Opt. Express 23 17394Google Scholar

    [14]

    Belardi W, Knight J C 2014 Opt. Lett. 39 1853Google Scholar

    [15]

    Vincetti L, Setti V, Zoboli M 2010 IEEE Photonics Technol. Lett. 22 972Google Scholar

    [16]

    Wang Y Y, Couny F, Roberts P J, Benabid F 2010 Conference on Lasers and Electro-Optics, San Jose, California, United States, 16–21 May, 2010, pCPDB4

    [17]

    Setti V, Vincetti L, Argyros A 2013 Opt. Express 21 3388Google Scholar

    [18]

    Cruz A L S, Serrao V A, Barbosa C L, Franco M A R,Cordeiro M B C,Argyros A,Tang X L 2015 J. Microwaves, Optoelectron. Electromagn. Appl. 14 SI-45

    [19]

    Sultana J, Islam M S, Cordeiro C M B, Dinovitser A, Kaushik M, Ng Brian W H, Abbott D 2020 Fibers 8 14Google Scholar

    [20]

    Yan D X, Zhang H W, Xu D G, Shi W, Yan C, Liu P X, Shi J, Yao J Q 2016 Journal of Lightwave Technology 34 3373

    [21]

    张果, 孙帅, 张尧, 盛泉, 史伟, 姚建铨 2019 红外与激光工程 49 118Google Scholar

    Zhang G, Sun S, Zhang Y, Sheng Q, Shi W, Yao J Q 2019 Infrared and Laser Engineering. 49 118Google Scholar

    [22]

    Liu H, Wang Y, Xu D, et al. 2017 J. Phys. D Appl. Phys. 50 375103Google Scholar

    [23]

    Wu Z Q, Zhou X Y, Shi Z H, Xia H D, Huang J, Jiang X D, Wu W D 2016 Opt. Eng. 55 037105Google Scholar

    [24]

    Habib M A, Anower M S, Abdulrazak L F, Reza M S 2019 Opt. Fiber Technol. 52 101933Google Scholar

    [25]

    魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢 2019 物理学报 68 114209Google Scholar

    Wei W, Zhang Z M, Tang L Q, Ding L, Fan W D, Li Y G 2019 Acta Phys. Sin. 68 114209Google Scholar

    [26]

    Zhang L, Ren G J, Yao J Q 2013 Optoelectron. Lett. 9 438Google Scholar

    [27]

    陈翔, 胡雄伟, 李进延 2019 激光与光电子学进展 56 050602Google Scholar

    Chen X, Hu X W, Li J Y 2019 Laser & Optoelectronics Progress 56 050602Google Scholar

    [28]

    Wu Z Q, Shi Z H, Xia H D, Zhou X Y, Deng Q H, Huang J, Jiang X D, Wu W D 2016 IEEE Photon. J. 8 1Google Scholar

    [29]

    Bikash K P, Kawsar A 2019 Opt. Fiber Technol. 53 102031Google Scholar

    [30]

    崔莉, 赵建林, 张晓娟, 杨德兴 2008 光学学报 28 1172Google Scholar

    Cui L, Zhao J L, Zhang X J, Yang D X 2008 Acta Optica Sinica 28 1172Google Scholar

    [31]

    姬江军, 孔德鹏, 马天, 何晓阳, 陈琦, 王丽莉 2014 红外与激光工程 43 1909Google Scholar

    Jiang J J, Kong D P, Ma T, He X Y, Chen Q, Wang L L 2014 Infrared and Laser Engineering 43 1909Google Scholar

    [32]

    Belardi W, C. Knight J 2013 Opt. Express 21 21912Google Scholar

Metrics
  • Abstract views:  6144
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2020
  • Accepted Date:  15 May 2020
  • Available Online:  15 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回