Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study of interface thermal resistance in asymmetric nanochannel

Mei Tao Chen Zhan-Xiu Yang Li Zhu Hong-Man Miao Rui-Can

Citation:

Molecular dynamics study of interface thermal resistance in asymmetric nanochannel

Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can
PDF
HTML
Get Citation
  • Heat transfer in a micro-scale system has less thermal inertia and faster thermal response, which has unique advantages in controlling heat transfer. Interface thermal resistance is an important physical quantity that reflects the heat transfer performance of the interface on a micro-scale. In this paper, the interface thermal resistance os static fluid and flowing fluid in nanochannel, which are different in the wall temperature and wettability, are studied by the molecular dynamics method. In the static fluid, the results show that the wall wettability has a significant influence on the interface thermal resistance, and the stronger the wall wettability, the smaller the values of interface thermal resistance is. For the walls with different temperatures, it can be observed that the interface thermal resistance on high temperature wall is higher than that on low temperature, when the wall wettability is weaker. On the contrary, when the wall wettability is stronger, the effect of wall temperatures on the interface thermal resistance is negligible. An external force applied to the fluid domain makes the fluid flow. In the flowing fluid, the results show that the variation of wall wettability and external force can lead to the slip to different degrees at the interface, and the slip-induced frictional viscous heat is generated at the solid-liquid interface, and thus increasing the fluid temperature and the heat flux of the system. The effect of external force on the thermal resistance is limited by the wall wettability. When the wall wettability is weaker, the increase of the external force will make the interface slip more easily and the thermal resistance decrease. With the stronger wall wettability, it is difficult to make the interface slip obviously with the increase of external force, and the influence of external force on interface thermal resistance decreases. The heat transfer performance at the solid-liquid interface is related to the number of fluid molecules adsorbed on the wall surface. The results show that in the static fluid, the increase of wall wettability will make more fluid molecules adsorbed on the wall, and the arrangement becomes more and more regular, which causes the interface thermal resistance to decrease and is beneficial to the interface heat transfer. In the flowing fluid, the change of external force has less influence on the number of adsorbed molecules, and the wall wettability is the main factor affecting the adsorption of fluid molecules on the wall.
      Corresponding author: Chen Zhan-Xiu, zhanxiu_chen@hebut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0605101-1)
    [1]

    范世福 2007 现代科学仪器 5 17Google Scholar

    Fan S F 2007 Modern Scientific Instruments 5 17Google Scholar

    [2]

    张锡奇, 闻利平, 江雷 2019 物理学报 68 018801Google Scholar

    Zhang X Q, Wen L P, Jiang L 2019 Acta Phys. Sin. 68 018801Google Scholar

    [3]

    唐琼辉 2008 博士学位论文 (合肥: 中国科学技术大学)

    Tang Q H 2008 Ph. D. Dissertation (Hefei: University of Science And Technology of China) (in Chinese)

    [4]

    赵素, 李金富, 周尧和 2007 材料导报 21 5Google Scholar

    Zhao S, Li J F, Zhou Y H 2007 Mater. Rep. 21 5Google Scholar

    [5]

    Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101Google Scholar

    [6]

    Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transfer 50 3977Google Scholar

    [7]

    Liu C, Fan H B, Zhang K, Yuen M, Li Z G 2010 J. Chem. Phys. 132 094703Google Scholar

    [8]

    葛宋, 陈民 2013 物理学报 62 110204Google Scholar

    Ge S, Chen M 2013 Acta Phys. Sin. 62 110204Google Scholar

    [9]

    周璐, 马红和 2019 工程热物理学报 11 2603

    Zhou L, Ma H H 2019 J. Eng. Therm. 11 2603

    [10]

    Chiloyan V, Garg J, Esfarjani K, Chen G 2015 Nat. Commun. 6 6755Google Scholar

    [11]

    张龙艳, 徐进良, 雷俊鹏 2019 物理学报 62 020201Google Scholar

    Zhang L Y, Xu J L, Lei J P 2019 Acta Phys. Sin. 62 020201Google Scholar

    [12]

    Shi Z, Barisik M, Beskok A 2012 Int. J. Therm. Sci. 59 29Google Scholar

    [13]

    Barisik M, Beskok A 2012 J. Comput. Phys. 231 7881Google Scholar

    [14]

    张程宾, 许兆林, 陈永平 2014 物理学报 63 263

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 263

    [15]

    Li Z G 2009 Phys. Rev. E 79 026312Google Scholar

    [16]

    胡海豹, 鲍路瑶, 黄苏和 2013 力学学报 45 507Google Scholar

    Hu H B, Bao L Y, Huang S H 2013 Chin. J. Theor. Appl. Mech. 45 507Google Scholar

    [17]

    Wang X, Jing D W 2019 Int. J. Heat Mass Transfer 128 199Google Scholar

    [18]

    Guo Y T, Surblys D, Kawagoe Y, Matsubara H, Liu X, Ohara T 2019 Int. J. Heat Mass Transfer 135 115Google Scholar

    [19]

    Toghraie D, Mokhtari M, Afrand M 2016 Physica E 84 152Google Scholar

    [20]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [21]

    Liang Z, Tsai H L 2011 Phys. Rev. E 83 061603

    [22]

    Wang X, Cheng P, Quan X 2016 Int. Commun. Heat Mass Transfer 77 183Google Scholar

    [23]

    Ziebland H, Burton J T A 1958 Br. J. Appl. Phys. 9 52Google Scholar

    [24]

    Calado J C G, Mardolacr U V, Castro C A N D 1987 Physica A 143 314Google Scholar

  • 图 1  物理模型结构示意图

    Figure 1.  The diagram of physical model structure.

    图 2  固液界面处流体温度的预测

    Figure 2.  Prediction of fluid temperature at the solid-liquid interface.

    图 3  液态氩在不同固液势能强度εwf/ε下的温度分布 (a)工况1; (b)工况2

    Figure 3.  Temperature distribution of liquid argon at different solid-liquid potential energy εwf/ε: (a) Condition 1; (b) condition 2.

    图 4  (a)工况1中近热壁面附近流体数密度分布; (b)工况2中近冷壁面附近流体数密度分布

    Figure 4.  (a) Number density distribution near the hot wall surface in condition 1; (b) number density distribution near the cold wall surface in condition 2.

    图 5  固液势能强度对温度跳跃的影响

    Figure 5.  Effect of solid-liquid potential energy on temperature jump.

    图 6  固液势能强度对系统热通量的影响

    Figure 6.  Effect of solid-liquid potential energy on heat flux of system.

    图 7  固液势能强度对界面热阻的影响

    Figure 7.  Effect of solid-liquid potential energy on interface thermal resistance.

    图 8  壁面吸附流体分快照图

    Figure 8.  Snapshot of wall adsorbed fluid molecules.

    图 9  固液势能强度对壁面吸附流体分子数的影响

    Figure 9.  Effect of solid-liquid potential energy on the number of fluid molecules adsorbed on the wall surface.

    图 10  液态氩的平均温度分布

    Figure 10.  Average temperature distribution of liquid argon.

    图 11  液态氩的热导率验证

    Figure 11.  Thermal conductivity verification of liquid argon.

    图 12  工况1中液体氩在不同外力作用下的速度分布 (a) F = 0.01ε/σ; (b) F = 0.012ε/σ; (c) F = 0.014ε/σ; (d) F = 0.016ε/σ

    Figure 12.  Velocity distribution of liquid argon under different external forces in condition 1: (a) F = 0.01ε/σ; (b) F = 0.012ε/σ; (c) F = 0.014ε/σ; (d) F = 0.016ε/σ

    图 13  工况1中液体氩在不同外力作用下的温度分布 (a) F = 0.01ε/σ; (b) F = 0.012ε/σ; (c) F = 0.014ε/σ; (d) F = 0.016ε/σ

    Figure 13.  Temperature distribution of liquid argon under different external forces in condition 1: (a) F = 0.01ε/σ; (b) F = 0.012ε/σ; (c) F = 0.014ε/σ; (d) F = 0.016ε/σ.

    图 14  工况1中液体氩在不同固液势能强度下的温度分布 (a) εwf/ε = 6.0; (b) εwf/ε = 1.5; (c) εwf/ε = 1.0; (d) εwf/ε = 0.75; (e) εwf/ε = 0.5

    Figure 14.  Temperature distribution of liquid argon under different solid-liquid potential energy intensity: (a) εwf/ε = 6.0; (b) εwf/ε = 1.5; (c) εwf/ε = 1.0; (d) εwf/ε = 0.75; (e) εwf/ε = 0.5.

    图 15  不同外力作用下近热壁面局部(1.19 nm)平均温度分布

    Figure 15.  Local (1.19 nm) average temperature distribution near the hot wall under different external forces.

    图 16  近热壁面处液态氩的速度分布

    Figure 16.  Velocity distribution of liquid argon near the hot wall surface.

    图 17  外力作用下固液势能强度比对系统热通量的影响

    Figure 17.  Effect of solid-liquid potential energy on system heat flux under external force

    图 18  工况1中不同外力作用下固液势能强度对温度跳跃的影响 (a) 热壁面; (b) 冷壁面

    Figure 18.  Effect of solid-liquid potential energy on temperature jump under different external forces in condition 1: (a) Hot wall surface; (b) cold wall surface.

    图 19  工况1中不同外力作用下固液势能强度对界面热阻的影响 (a) 热壁面; (b) 冷壁面

    Figure 19.  Effect of solid-liquid potential energy on interface thermal resistance under different external forces in condition 1: (a) Hot wall surface; (b) cold wall surface.

    图 20  动态流体中热壁面吸附流体分子数

    Figure 20.  The number of adsorbed fluid molecules on the hot wall in flowing fluid.

    表 1  模拟工况

    Table 1.  Simulated conditions

    模拟工况壁面温度固液势能强度εwf/ε
    工况1热壁面(140 K)6.01.51.00.750.5
    冷壁面(90 K)6.06.06.06.06.0
    工况2热壁面(140 K)6.06.06.06.06.0
    冷壁面(90 K)6.01.51.00.750.5
    DownLoad: CSV

    表 2  不同固液势能强度下对应的接触角

    Table 2.  Corresponding contact angle under different solid-liquid potential energy intensity

    εwf/ε6.01.51.00.750.5
    θ/(°)0006090
    DownLoad: CSV
  • [1]

    范世福 2007 现代科学仪器 5 17Google Scholar

    Fan S F 2007 Modern Scientific Instruments 5 17Google Scholar

    [2]

    张锡奇, 闻利平, 江雷 2019 物理学报 68 018801Google Scholar

    Zhang X Q, Wen L P, Jiang L 2019 Acta Phys. Sin. 68 018801Google Scholar

    [3]

    唐琼辉 2008 博士学位论文 (合肥: 中国科学技术大学)

    Tang Q H 2008 Ph. D. Dissertation (Hefei: University of Science And Technology of China) (in Chinese)

    [4]

    赵素, 李金富, 周尧和 2007 材料导报 21 5Google Scholar

    Zhao S, Li J F, Zhou Y H 2007 Mater. Rep. 21 5Google Scholar

    [5]

    Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101Google Scholar

    [6]

    Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transfer 50 3977Google Scholar

    [7]

    Liu C, Fan H B, Zhang K, Yuen M, Li Z G 2010 J. Chem. Phys. 132 094703Google Scholar

    [8]

    葛宋, 陈民 2013 物理学报 62 110204Google Scholar

    Ge S, Chen M 2013 Acta Phys. Sin. 62 110204Google Scholar

    [9]

    周璐, 马红和 2019 工程热物理学报 11 2603

    Zhou L, Ma H H 2019 J. Eng. Therm. 11 2603

    [10]

    Chiloyan V, Garg J, Esfarjani K, Chen G 2015 Nat. Commun. 6 6755Google Scholar

    [11]

    张龙艳, 徐进良, 雷俊鹏 2019 物理学报 62 020201Google Scholar

    Zhang L Y, Xu J L, Lei J P 2019 Acta Phys. Sin. 62 020201Google Scholar

    [12]

    Shi Z, Barisik M, Beskok A 2012 Int. J. Therm. Sci. 59 29Google Scholar

    [13]

    Barisik M, Beskok A 2012 J. Comput. Phys. 231 7881Google Scholar

    [14]

    张程宾, 许兆林, 陈永平 2014 物理学报 63 263

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 263

    [15]

    Li Z G 2009 Phys. Rev. E 79 026312Google Scholar

    [16]

    胡海豹, 鲍路瑶, 黄苏和 2013 力学学报 45 507Google Scholar

    Hu H B, Bao L Y, Huang S H 2013 Chin. J. Theor. Appl. Mech. 45 507Google Scholar

    [17]

    Wang X, Jing D W 2019 Int. J. Heat Mass Transfer 128 199Google Scholar

    [18]

    Guo Y T, Surblys D, Kawagoe Y, Matsubara H, Liu X, Ohara T 2019 Int. J. Heat Mass Transfer 135 115Google Scholar

    [19]

    Toghraie D, Mokhtari M, Afrand M 2016 Physica E 84 152Google Scholar

    [20]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [21]

    Liang Z, Tsai H L 2011 Phys. Rev. E 83 061603

    [22]

    Wang X, Cheng P, Quan X 2016 Int. Commun. Heat Mass Transfer 77 183Google Scholar

    [23]

    Ziebland H, Burton J T A 1958 Br. J. Appl. Phys. 9 52Google Scholar

    [24]

    Calado J C G, Mardolacr U V, Castro C A N D 1987 Physica A 143 314Google Scholar

Metrics
  • Abstract views:  4549
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2020
  • Accepted Date:  26 June 2020
  • Available Online:  07 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回