Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and ferroelectric domain structure of micro-scale piezoelectric array fabricated by Mn doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal

Wang Ju-Shan Ma Jin-Peng Zhao Xiang-Yong Chen Ming-Zhu Wang Fei-Fei Wang Tao Tang Yan-Xue Cheng Wei Lin Di Luo Hao-Su

Citation:

Preparation and ferroelectric domain structure of micro-scale piezoelectric array fabricated by Mn doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal

Wang Ju-Shan, Ma Jin-Peng, Zhao Xiang-Yong, Chen Ming-Zhu, Wang Fei-Fei, Wang Tao, Tang Yan-Xue, Cheng Wei, Lin Di, Luo Hao-Su
PDF
HTML
Get Citation
  • Relaxor ferroelectric single crystal piezoelectric materials have become the core components of new piezoelectric devices such as ultrasonic transducers used in high-end medical ultrasound diagnostic and therapeutic equipment. High-element density array technology and micro-electro-mechanical systems have developed rapidly. For the new generation of 20–80 MHz medical high-frequency ultrasound transducers, the thickness of high-frequency piezoelectric composite material is usually 20–60 μm, and the width of each piezoelectric column is about 5–15 μm. However, the kerf of traditional cutting-and-filling method is too wide, and it is difficult to reduce the size of the array element, which is not conducive to the density of the array element and the demand for higher frequency applications with higher resolution. In this work, a micromechanical fabrication method based on deep reactive ion etching is used to reduce the slit width and increase the array density. We study the fabrication technology of novel and high-performance relaxor ferroelectric single crystal Mn doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (Mn-PIMNT) micro scale piezoelectric array. The influence of the parameters of lithography and deep reactive ion etching on the morphology of piezoelectric array are studied. We obtain the formation mechanisms of different kerfs, different shapes of piezoelectric array element and the relationship among etching rate of Mn-PIMNT single crystal with antenna power, bias power and etching gas ratio. Finally, the size of piezoelectric array element is less than 10 μm, the etching depth is more than 20 μm, the kerf width is less than 5 μm, the angle is controllable, and the maximum is more than 87°. The ferroelectric domain structure and the regulation of electric field effect of micro scale piezoelectric elements are studied by means of piezoelectric force microscope. The variation rules of piezoelectric properties and micro scale are obtained. This method can effectively bypass the shortcomings of the wide kerf and the destruction of the crystal orientation by the traditional cutting-and-filling method. It provides a new preparation technology for the development of high-frequency piezoelectric composites, high-density ultrasonic transducer arrays and new piezoelectric micro mechanical systems. This project presents the guidance and reference for the new micromachining technology of ferroelectric materials, and also lays the foundation for the high-frequency piezoelectric composite and high-frequency ultrasonic transducer.
      Corresponding author: Zhao Xiang-Yong, xyzhao@shnu.edu.cn ; Cheng Wei, chengwei@shnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772192, 11574214) and the Shanghai Committee of Science and Technology, China (Grant Nos. 17070502700, 19070502800)
    [1]

    Wang D W, Cao M S, Zhang S J 2012 J. Am. Ceram. Soc. 95 3220Google Scholar

    [2]

    Wang D W, Cao M S, Zhang S J 2012 Phys. Status Solidi RRL 6 135Google Scholar

    [3]

    Wang D W, Cao M S, Zhao Q L, Cui Y, Zhang S J 2013 Phys. Status Solidi RRL 7 221Google Scholar

    [4]

    Lee J S, Park E C, Lee S H, Lee D S 2005 Mater. Chem. Phys. 90 381Google Scholar

    [5]

    罗豪甦, 沈关顺, 齐振一, 许桂生, 王评初, 乐秀宏, 李金龙, 仲维卓, 殷之文 1997 人工晶体学报 26 191

    Luo H S, Shen G S, Qi Z Y, Xu G S, Wang P C, Le X H, Li J L, Zhong W Z, Yin Z W 1997 J. Synthetic Crystals 26 191

    [6]

    Luo H S, Xu G S, Wang P C, Yin Z W 1999 Ferroelectrics 231 97Google Scholar

    [7]

    Xu G S, Luo H S, Xu H Q, Qi Z Y, Wang P C, Zhong W Z, Yin Z W 2001 J. Cryst. Growth. 222 202Google Scholar

    [8]

    Feng Z Y, He T H, Xu H Q, Luo H S, Yin Z W 2004 Solid. State. Commun. 130 557Google Scholar

    [9]

    Wu X, Liu L H, Li X B, Zhang Q H, Ren B, Lin D, Zhao X Y, Luo H S, Huang Y L 2011 J. Cryst. Growth. 318 865Google Scholar

    [10]

    Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [11]

    He C J, Chen Z Y, Chen H B, Wu T, Wang J M, Gu X R, Liu Y W, Zhu K J 2018 J. Nanophotonics 12 046019Google Scholar

    [12]

    He C J, Chen H B, Bai F, Fan Z B, Sun L, Xu F, Wang J M, Liu Y W, Zhu K J 2012 J. Appl. Phys. 112 126102Google Scholar

    [13]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776Google Scholar

    [14]

    He C J, Chen H B, Wang J M, Gu X R, Wu T, Liu Y W 2015 J. Appl. Phys. 117 164104Google Scholar

    [15]

    Yang Y, Jung J H, Yun B K, Zhang F, Pradel K C, Guo W, Wang Z L 2012 Adv. Mater. 24 5357Google Scholar

    [16]

    岳晴雯 2016 博士学位论文 (上海: 中国科学院大学)

    Yue Q W 2016 Ph. D. Dissertation (Shanghai: University of Chinese Academy of Sciences) (in Chinese)

    [17]

    Sun E W, Cao W W 2014 Prog. Mater. Sci. 65 124Google Scholar

    [18]

    Zhu R F, Zhao J, Liu F, Zhang Z, Fang B J, Chen J W, Xu H Q, Wang X A, Luo H S 2020 J. Am. Ceram. Soc. 103 2575Google Scholar

    [19]

    Xie Q X, Hu Y Q, Xue S D, Ma J P, Zhao X Y, Tang Y X, Wang F F, Chew K H, Lin D, Luo H S 2019 Mater. Chem. Phys. 238 121890Google Scholar

    [20]

    Zhang J S, Ren W, Jing X P, Shi P, Wu X Q 2015 Ceram. Int. 41 S656Google Scholar

    [21]

    Jian X H, Li S B, Huang W B, Cui Y Y, Jiang X N 2015 J. Intell. Mater. Syst. Struct. 26 2011Google Scholar

    [22]

    周丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦 2008 物理学报 57 4552Google Scholar

    Zhou D, Luo L H, Wang F F, Jia Y M, Zhao X Y, Luo H S 2008 Acta Phys. Sin. 57 4552Google Scholar

    [23]

    乔学光, 邵志华, 包维佳, 荣强周 2017 物理学报 66 074205Google Scholar

    Qiao X G, Shao Z H, Bao W J, Rong Q Z 2017 Acta Phys. Sin. 66 074205Google Scholar

    [24]

    徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光 2018 物理学报 67 157506Google Scholar

    Xu M, Yan J M, Xu Z X, Guo L, Zheng R K, Li X G 2018 Acta Phys. Sin. 67 157506Google Scholar

    [25]

    赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣 2018 物理学报 67 194302Google Scholar

    Zhao Z F, Zhang W J, Niu L L, Meng L, Zheng H R 2018 Acta Phys. Sin. 67 194302Google Scholar

    [26]

    Wang J S, Xiao J J, Zhao X Y, Wang F F, Tang Y X, Zhang Q Z, Fang B J, Zhu R F, Yue Q W, Liu D X, Deng J 2020 Ceram. Int. 46 11913Google Scholar

    [27]

    Nakano N, Petrovic Z L, Makabe T 1994 Jpn. J. Appl. Phys. 33 2223Google Scholar

    [28]

    Crintea D L, Czarnetzki U, Iordanova S, Koleva I, Luggenholscher D 2009 J. Phys. D: Appl. Phys. 42 045208Google Scholar

    [29]

    Sakoda T, Okraku-Yirenkyi Y, Youl-Moon S, Otsubo M, Chikahisa H 2001 Jpn. J. Appl. Phys. 40 6607Google Scholar

    [30]

    Uchida T, Hamaguchi S 2008 J. Phys. D: Appl. Phys. 41 083001Google Scholar

    [31]

    Wang Y J, Luo C T, Wang S H, Chen C, Yuan G L, Luo H S, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar

    [32]

    Li Y, Lu G X, Chen J J, Jing J C, Huo T C, Chen R M, Jiang L M, Zhou Q F, Chen Z P 2019 Photoacoustics 15 100138Google Scholar

    [33]

    Jiang L M, Chen R M, Xing J, Lu G X, Li R Z, Jiang Y, Shung K K, Zhu J G, Zhou Q F 2019 J. Appl. Phys. 125 214501Google Scholar

    [34]

    Zhou Q F, Lam K H, Zheng H R, Qiu W B, Shung K K 2014 Prog. Mater. Sci. 66 87Google Scholar

    [35]

    Zhang J S, Ren W, Liu Y T, Wu X Q, Fei C L, Quan Y, Zhou Q F 2018 Sensors 18 1Google Scholar

  • 图 1  实验流程图

    Figure 1.  Flow chart of the whole experiment.

    图 2  紫外光刻实验结果 (a), (b) 阵元尺寸为12.94 μm时, 光学显微镜下的表面形貌和扫描电子显微镜下的截面图; (c), (d) 阵元尺寸为13.97 μm时, 光学显微镜下的表面形貌和扫描电子显微镜下的截面图

    Figure 2.  Results of lithography: (a), (b) Surface morphology under optical microscope and cross section under scanning electron microscope when the element size is 12.94 μm; (c), (d) surface morphology under optical microscope and cross section under scanning electron microscope when the element size is 13.97 μm.

    图 3  光刻图案结构示意图

    Figure 3.  Schematic diagram of lithographic pattern structure.

    图 4  电镀实验结果 (a) 扫描电子显微镜下的表面; (b) 扫描电子显微镜下的截面

    Figure 4.  Electroplating experiment results: (a) Surface under scanning electron microscope; (b) cross section under scanning electron microscope.

    图 5  刻蚀速率实验结果 (a) 刻蚀速率与天线功率的关系; (b) 刻蚀速率与偏置功率的关系; (c) 刻蚀速率与刻蚀气体流量比的关系

    Figure 5.  Etching rate experimental results: (a) Relationship between etching rate and antenna power; (b) relationship between etching rate and bias power; (c) relationship between etching rate and etching gas flow ratio.

    图 6  刻蚀结果 (a) 高密度面阵表面形貌; (b) 高密度面阵截面形貌; (c) 锥形阵列截面形貌; (d) 深刻蚀高密度面阵截面形貌

    Figure 6.  Etching results: (a) Surface morphology of high density array; (b) cross section morphology of high density array; (c) cross section morphology of conical array; (d) the surface morphology of deep etching of high density surface array.

    图 7  压电力显微镜下的不同尺度区域结构 (a) 30 μm × 30 μm区域的表面形貌; (b) 30 μm × 30 μm区域的面外振幅; (c) 30 μm × 30 μm区域的相位; (d) 5 μm × 5 μm区域的表面形貌; (e) 5 μm × 5 μm区域的面外振幅; (f) 5 μm × 5 μm区域的相位; (g) 1 μm × 1 μm区域的表面形貌; (h) 1 μm × 1 μm区域的面外振幅; (i) 1 μm × 1 μm区域的相位

    Figure 7.  Structure of different scale areas under the piezoelectric microscope: (a) Surface morphology of 30 μm × 30 μm area; (b) out of plane amplitude of 30 μm × 30 μm area; (c) phase of 30 μm × 30 μm area; (d) surface morphology of 5 μm × 5 μm area; (e) out of plane amplitude of 5 μm × 5 μm area; (f) phase of 5 μm × 5 μm area; (g) surface morphology of 1 μm × 1 μm area; (h) out of plane amplitude of 1 μm × 1 μm area; (i) phase of 1 μm × 1 μm area.

    图 8  压电力显微镜下1 μm × 1 μm区域的结果 (a) ± 10 V电压下的面外振幅; (b) ± 10 V电压下的相位; (c) ± 20 V电压下的面外振幅; (d) ± 20 V电压下的相位; (e) ± 30 V电压下的面外振幅; (f) ± 30 V电压下的相位

    Figure 8.  Results of 1 μm × 1 μm area under the piezoelectric force microscope: (a) Out of plane amplitude at ± 10 V; (b) phase at ± 10 V; (c) out of plane amplitude at ± 20 V; (d) phase at ± 20 V; (e) out of plane amplitude at ± 30 V; (f) phase at ± 30 V.

    图 9  室温下1 μm × 1 μm区域内的原位电场诱导振幅和相位演化

    Figure 9.  Electric field induced amplitude and phase evolution in situ in the 1 μm × 1 μm area at room temperature

    表 1  电镀液配料成分及含量

    Table 1.  Composition and content of electroplate bath ingredients.

    成分含量
    氨基磺酸镍/g·L–1280—400
    硼酸/g·L–140—50
    阳极活化剂/g·L–160—100
    润湿剂/mL·L–11—5
    去应力剂适量
    DownLoad: CSV
  • [1]

    Wang D W, Cao M S, Zhang S J 2012 J. Am. Ceram. Soc. 95 3220Google Scholar

    [2]

    Wang D W, Cao M S, Zhang S J 2012 Phys. Status Solidi RRL 6 135Google Scholar

    [3]

    Wang D W, Cao M S, Zhao Q L, Cui Y, Zhang S J 2013 Phys. Status Solidi RRL 7 221Google Scholar

    [4]

    Lee J S, Park E C, Lee S H, Lee D S 2005 Mater. Chem. Phys. 90 381Google Scholar

    [5]

    罗豪甦, 沈关顺, 齐振一, 许桂生, 王评初, 乐秀宏, 李金龙, 仲维卓, 殷之文 1997 人工晶体学报 26 191

    Luo H S, Shen G S, Qi Z Y, Xu G S, Wang P C, Le X H, Li J L, Zhong W Z, Yin Z W 1997 J. Synthetic Crystals 26 191

    [6]

    Luo H S, Xu G S, Wang P C, Yin Z W 1999 Ferroelectrics 231 97Google Scholar

    [7]

    Xu G S, Luo H S, Xu H Q, Qi Z Y, Wang P C, Zhong W Z, Yin Z W 2001 J. Cryst. Growth. 222 202Google Scholar

    [8]

    Feng Z Y, He T H, Xu H Q, Luo H S, Yin Z W 2004 Solid. State. Commun. 130 557Google Scholar

    [9]

    Wu X, Liu L H, Li X B, Zhang Q H, Ren B, Lin D, Zhao X Y, Luo H S, Huang Y L 2011 J. Cryst. Growth. 318 865Google Scholar

    [10]

    Deng C G, He C J, Chen Z Y, Chen H B, Mao R, Liu Y W, Zhu K J, Gao H F, Ding Y 2019 J. Appl. Phys. 126 085702Google Scholar

    [11]

    He C J, Chen Z Y, Chen H B, Wu T, Wang J M, Gu X R, Liu Y W, Zhu K J 2018 J. Nanophotonics 12 046019Google Scholar

    [12]

    He C J, Chen H B, Bai F, Fan Z B, Sun L, Xu F, Wang J M, Liu Y W, Zhu K J 2012 J. Appl. Phys. 112 126102Google Scholar

    [13]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776Google Scholar

    [14]

    He C J, Chen H B, Wang J M, Gu X R, Wu T, Liu Y W 2015 J. Appl. Phys. 117 164104Google Scholar

    [15]

    Yang Y, Jung J H, Yun B K, Zhang F, Pradel K C, Guo W, Wang Z L 2012 Adv. Mater. 24 5357Google Scholar

    [16]

    岳晴雯 2016 博士学位论文 (上海: 中国科学院大学)

    Yue Q W 2016 Ph. D. Dissertation (Shanghai: University of Chinese Academy of Sciences) (in Chinese)

    [17]

    Sun E W, Cao W W 2014 Prog. Mater. Sci. 65 124Google Scholar

    [18]

    Zhu R F, Zhao J, Liu F, Zhang Z, Fang B J, Chen J W, Xu H Q, Wang X A, Luo H S 2020 J. Am. Ceram. Soc. 103 2575Google Scholar

    [19]

    Xie Q X, Hu Y Q, Xue S D, Ma J P, Zhao X Y, Tang Y X, Wang F F, Chew K H, Lin D, Luo H S 2019 Mater. Chem. Phys. 238 121890Google Scholar

    [20]

    Zhang J S, Ren W, Jing X P, Shi P, Wu X Q 2015 Ceram. Int. 41 S656Google Scholar

    [21]

    Jian X H, Li S B, Huang W B, Cui Y Y, Jiang X N 2015 J. Intell. Mater. Syst. Struct. 26 2011Google Scholar

    [22]

    周丹, 罗来慧, 王飞飞, 贾艳敏, 赵祥永, 罗豪甦 2008 物理学报 57 4552Google Scholar

    Zhou D, Luo L H, Wang F F, Jia Y M, Zhao X Y, Luo H S 2008 Acta Phys. Sin. 57 4552Google Scholar

    [23]

    乔学光, 邵志华, 包维佳, 荣强周 2017 物理学报 66 074205Google Scholar

    Qiao X G, Shao Z H, Bao W J, Rong Q Z 2017 Acta Phys. Sin. 66 074205Google Scholar

    [24]

    徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光 2018 物理学报 67 157506Google Scholar

    Xu M, Yan J M, Xu Z X, Guo L, Zheng R K, Li X G 2018 Acta Phys. Sin. 67 157506Google Scholar

    [25]

    赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣 2018 物理学报 67 194302Google Scholar

    Zhao Z F, Zhang W J, Niu L L, Meng L, Zheng H R 2018 Acta Phys. Sin. 67 194302Google Scholar

    [26]

    Wang J S, Xiao J J, Zhao X Y, Wang F F, Tang Y X, Zhang Q Z, Fang B J, Zhu R F, Yue Q W, Liu D X, Deng J 2020 Ceram. Int. 46 11913Google Scholar

    [27]

    Nakano N, Petrovic Z L, Makabe T 1994 Jpn. J. Appl. Phys. 33 2223Google Scholar

    [28]

    Crintea D L, Czarnetzki U, Iordanova S, Koleva I, Luggenholscher D 2009 J. Phys. D: Appl. Phys. 42 045208Google Scholar

    [29]

    Sakoda T, Okraku-Yirenkyi Y, Youl-Moon S, Otsubo M, Chikahisa H 2001 Jpn. J. Appl. Phys. 40 6607Google Scholar

    [30]

    Uchida T, Hamaguchi S 2008 J. Phys. D: Appl. Phys. 41 083001Google Scholar

    [31]

    Wang Y J, Luo C T, Wang S H, Chen C, Yuan G L, Luo H S, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar

    [32]

    Li Y, Lu G X, Chen J J, Jing J C, Huo T C, Chen R M, Jiang L M, Zhou Q F, Chen Z P 2019 Photoacoustics 15 100138Google Scholar

    [33]

    Jiang L M, Chen R M, Xing J, Lu G X, Li R Z, Jiang Y, Shung K K, Zhu J G, Zhou Q F 2019 J. Appl. Phys. 125 214501Google Scholar

    [34]

    Zhou Q F, Lam K H, Zheng H R, Qiu W B, Shung K K 2014 Prog. Mater. Sci. 66 87Google Scholar

    [35]

    Zhang J S, Ren W, Liu Y T, Wu X Q, Fei C L, Quan Y, Zhou Q F 2018 Sensors 18 1Google Scholar

  • [1] Du Jin-Hua, Li Yong, Sun Ning-Ning, Zhao Ye, Hao Xi-Hong. Dielectric, ferroelectric and high energy storage behavior of (1–x)K0.5Na0.5NbO3xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics. Acta Physica Sinica, 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [2] Li Fei, Zhang Shu-Jun, Xu Zhuo. Piezoelectricity—An important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [3] Zheng Long-Li, Qi Shi-Chao, Wang Chun-Ming, Shi Lei. Piezoelectric, dielectric, and ferroelectric properties of high Curie temperature bismuth layer-structured bismuth titanate-tantalate (Bi3TiTaO9). Acta Physica Sinica, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [4] Shang Xun-Zhong, Chen Wei, Cao Wan-Qiang. Research on dielectric tunability of relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(21): 217701. doi: 10.7498/aps.61.217701
    [5] Liu Peng, Zhang Dan. Dielectric relaxation of (Pb(1-3x/2)Lax)(Zr0.5Sn0.3Ti0.2)O3 antiferroelectric ceramics induced by lanthanum doping. Acta Physica Sinica, 2011, 60(1): 017701. doi: 10.7498/aps.60.017701
    [6] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [7] He Li-Rong, Gu Chun-Ming, Shen Wen-Zhong, Cao Jun-Cheng, Hiroshi Ogawa, Guo Qi-Xin. Generation and detection of terahertz radiation on reactive ion etched ZnTe surfaces. Acta Physica Sinica, 2005, 54(10): 4938-4943. doi: 10.7498/aps.54.4938
    [8] Shen Han, Xu Hua, Chen Min, Li Jing-De. Non-ferroelectric single crystal of ultra-high dielectric constant. Acta Physica Sinica, 2004, 53(5): 1529-1533. doi: 10.7498/aps.53.1529
    [9] Cao Wan-Qiang, Li Jing-De. . Acta Physica Sinica, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [10] Liu Peng, Bian Xiao-Bing, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [11] LIU PENG, YANG TONG-QING, ZHANG LIANG-YING, YAO XI. INVESTIGATION OF DIFFUSED PHASE TRANSITION AND POLAR RELAXATION IN Pb(Zr,Sn,Ti)O3 ANTIFERROELECTRIC CERAMICS. Acta Physica Sinica, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
    [12] ZHANG XING-YUAN, TAKEO FURUKAWA. DIELECTRIC RELAXATION OF NONCRYSTALLINE REGIONS IN THE FERROELECTRIC COPOLYMERS OF VINYLIDENE FLUORIDE/TRIFLUOROETHYLENE. Acta Physica Sinica, 1993, 42(8): 1370-1374. doi: 10.7498/aps.42.1370
    [13] LI JING-DE, LI JIA-BAO, FU SHI-LIU, SHEN WEN-BIN. THE FREE AND RANDOM DIELECTRIC RELAXATIONS. Acta Physica Sinica, 1992, 41(1): 155-161. doi: 10.7498/aps.41.155
    [14] ZHANG JING-JUAN, YANG GUO-GUANG, XU CHAO, LIAN DE-LIANG, CHEN JUN-BEN, HUO YU PING, GAO SHI-PING, CHEN BAO-QIN. GAUSSIAN-TO-UNIFORM BEAM CONVERSION WITH PHASE-ONLY MASKS MADE BY REACTIVE ION-ETCHING. Acta Physica Sinica, 1992, 41(12): 1961-1967. doi: 10.7498/aps.41.1961
    [15] DING YI, YU WEN-HAI, WU KUN-YU. ANELASTIC RELAXATION WITH INFRARED DIVERGENCE SUPERIONIC GLASSES. Acta Physica Sinica, 1989, 38(1): 134-139. doi: 10.7498/aps.38.134
    [16] Ding Yi Wu Kun-yu Yu Wen-hai. INTERPRETATION OF THE CONDUCTANCE OF AMORPHOUS SUPERIONICS BASED ON THE THEORY OF LOW-FREQUENCY FLUCTUATION, DISSIPATION AND RELAXATION. Acta Physica Sinica, 1987, 36(8): 1087-1092. doi: 10.7498/aps.36.1087
    [17] WANG HONG, XU BIN, LIU XI-LING, HAN JIAN-RU, SHAN SHU-XIA. PIEZOELECTRIC PROPERTIES AND ELASTIC PROPERTIES OF SINGLE CRYSTAL BERLINITE (α-AlPO4). Acta Physica Sinica, 1985, 34(12): 1634-1640. doi: 10.7498/aps.34.1634
    [18] ZHANG WEI-PIN, LI CHONG-ZHOU. LOW FREQUENCY DIELECTRIC PROPERTIES OF PZT-8 FERROELECTRIC PIEZOELECTRIC CERAMICS. Acta Physica Sinica, 1982, 31(2): 247-251. doi: 10.7498/aps.31.247
    [19] ZHU YONG, ZHANG DAO-FAN. THE ELECTRO-OPTIC,PYROELECTRIC,DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF THE SINGLE CRYSTAL Sr4NaLiNb10O30. Acta Physica Sinica, 1979, 28(2): 234-239. doi: 10.7498/aps.28.234
    [20] CHIEN TSU-WEN. THEORY OF SOUND ABSORPTION AND THE RELAXATION MECHANISM OF MgSO4 IN WATER SOLUTION. Acta Physica Sinica, 1962, 18(10): 501-508. doi: 10.7498/aps.18.501
Metrics
  • Abstract views:  5378
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2020
  • Accepted Date:  04 June 2020
  • Available Online:  07 June 2020
  • Published Online:  20 September 2020

/

返回文章
返回