Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on gliding discharge mode of rotating gliding arc discharge plasma

Lei Jian-Ping He Li-Ming Chen Yi Chen Gao-Cheng Zhao Bing-Bing Zhao Zhi-Yu Zhang Hua-Lei Deng Jun Fei Li

Citation:

Experimental study on gliding discharge mode of rotating gliding arc discharge plasma

Lei Jian-Ping, He Li-Ming, Chen Yi, Chen Gao-Cheng, Zhao Bing-Bing, Zhao Zhi-Yu, Zhang Hua-Lei, Deng Jun, Fei Li
PDF
HTML
Get Citation
  • Alternating current rotating gliding arc discharge can produce large-scale, wide-range non-equilibrium plasma at atmospheric pressure. In order to investigate the gliding discharge mode, discharge characteristics and Spectral characteristics of AC rotating gliding arc discharge plasma, high speed camera, oscilloscope and spectrometer are used to collect discharge images and electrical signals of rotating gliding arc synchronously. Thus the dynamic behavior of arc and the characteristics of electric signal in the process of rotating gliding arc can be analyzed. The experimental results show that there are two different discharge modes in the rotating gliding arc discharge process, namely the breakdown gliding discharge mode (B-G mode) and the stable gliding discharge mode (A-G mode). The B-G mode is mainly characterized by high-frequency breakdown phenomenon (breakdown-extinguish-breakdown) during the arc gliding process, while the A-G mode is mainly characterized by stable continuous arc sliding. The paper also discusses the working mechanism in which the working parameters influence the gliding arc discharge characteristics. It is shown that the discharge mode and discharge characteristics of arc are the result of the combined action of excitation voltage and gas flow. When the gas flow is large and the excitation voltage is small, the gliding arc is an unstable discharge dominated by the B-G mode. Conversely, when the excitation voltage is large and the gas flow is small, the gliding arc is a stable gliding discharge dominated by the A-G mode. In addition, in B-G mode, the energy consumption is mainly concentrated in the breakdown moment, and the energy release is mainly pulsed. However, when the gliding arc discharge is in A-G mode, the energy dissipation is mainly used to maintain the continuous existence of the arc without extinguishing, and the energy release is stable and continuous. Affected by the gas flow rate and excitation voltage, the breakdown frequency of the B-G mode is greater than that of the A-G mode. Higher repeat breakdown frequency can cause multiple ionization in the process of gliding arc discharge, which produces more active particles. The research conclusions in this paper provide theoretical support for regulating the operating characteristics of the gliding arc discharge. In engineering application, the discharge mode, breakdown frequency and breakdown current of the gliding arc can be adjusted by changing the working parameters to obtain plasma sources with different characteristics.
      Corresponding author: Zhao Bing-Bing, zhaobing186@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51436008, 51806245) and the China Postdoctoral Science Foundation (Grant No. 2019M653961)
    [1]

    Czernichowski A 1994 Pure Appl. Chem. 66 061301

    [2]

    Czernichowski A, Czernichowski M 2005 17 th International Symposium On Plasma Chemistry Toronto, Canada, August 7–12, 2005 p001

    [3]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energy Combust. 25 0211Google Scholar

    [4]

    Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 04

    [5]

    Wu A J, Li X D, Yan J H, Zhu F S, Lu S Y 2016 Int. J. Hydrogen Energy 41 2222Google Scholar

    [6]

    Xia Y, Lu N, Wang B, Li J, Shang K F, Jiang N, Wu Y 2017 Int. J. Hydrogen Energy 42 001Google Scholar

    [7]

    Whitehead J C, Prantsidou M 2016 J. Phys. D: Appl. Phys. 49 154001Google Scholar

    [8]

    邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage Engineering 42 685

    [9]

    Zhang H, Zhu F S, Li X D, Xu R Y, Li L, Yan J H 2019 J. Hazard. Mater. 369 244Google Scholar

    [10]

    Xu R Y, Zhu F S, Zhang H, Ruya P M, Li L, Li X D 2020 Energy Fuels 34 2045Google Scholar

    [11]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697

    Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Engineering 42 3697

    [12]

    Pawłat Joanna, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K 2019 Plasma Chem. Plasma Process. 39 627Google Scholar

    [13]

    Hameedl T A, Kadhem S J 2020 IOP Conf. Ser.: Mater. Sci. Eng. 757 012045Google Scholar

    [14]

    Ju Y G, Sun W T 2015 Prog. Energy Combust. 48 21Google Scholar

    [15]

    Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar

    [16]

    Kong C D, Gao J L, Zhu J J, Andreas E, Marcus A, Li Z S 2018 IEEE Trans. Plasma Sci. 47 403

    [17]

    Gray J A T, Lacoste D A 2019 Combust. Flame 199 258Google Scholar

    [18]

    牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 物理学报 64 195204Google Scholar

    Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Physica Sinica 64 195204Google Scholar

    [19]

    Kikuchi Y, Nakagawa T 2020 IEEE Trans. Plasma Sci. 99 001

    [20]

    何立明, 陈一, 刘兴建, 吴勇, 刘鹏飞, 张一汉 2016 高电压技术 42 1921

    He L M, Chen Y, Liu X J, Wu Y, Liu P X, Zhang Y H 2016 High Voltage Engineering 42 1921

    [21]

    Sun S R, Kolev S, Wang H X, Bogaerts A 2016 Plasma Sources Sci. Technol. 26 015003Google Scholar

    [22]

    Kolev S, Bogaerts A 2018 Plasma Sources Sci. Technol. 27 125011Google Scholar

    [23]

    Ananthanarasimhan J, Rao L, Shivapuji A, Dasappa S 2019 International Plasma Chemistry Society, Naples, Italy, June 9–14, ISPC-24

    [24]

    Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H 2015 IEEE Trans. Plasma Sci. 43 836Google Scholar

    [25]

    Zhang H, Zhu F S, Tu X, Bo Z, Li X D 2016 Plasma Sci. Technol. 18 473Google Scholar

    [26]

    何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061

    He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061

    [27]

    鲁娜, 孙丹凤, 王冰, 李杰, 吴彦 2018 高电压技术 44 1930

    Lu N, Sun D F, Wang B, Li J, Wu Y 2018 High Voltage Engineering 44 1930

    [28]

    Li L, Zhang H, Li X D, Kong X Z, Xu R Y, Tay K, Tu X 2019 J. CO2 Util. 29 296Google Scholar

    [29]

    Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770 001

    [30]

    李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 物理学报 67 075201Google Scholar

    Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar

    [31]

    李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022

    Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022

  • 图 1  滑动弧放电示意图 (a) 二维刀型电极滑动弧放电示意图; (b) 三维旋转滑动弧放电示意图

    Figure 1.  Schematic diagram of gliding arc discharge: (a) Schematic diagram of two-dimensional knife-type electrode gliding arc discharge; (b) schematic diagram of three-dimensional rotating gliding arc discharge.

    图 2  旋转滑动弧放电实验系统示意图

    Figure 2.  Schematic diagram of rotating gliding arc discharge experiment system.

    图 3  B-G模式下的滑动弧放电的电信号及电弧运动图像(U0 = 100 V, Q = 120 SLM) (a)一个完整滑动周期的电信号曲线; (b)滑动弧放电图像(左)及完整周期的滑动弧运动过程图像(右); (c)滑动弧运动图像和电信号同步特征

    Figure 3.  Electric signal and arc image of rotating gliding arc discharge in B-G mode (U0 = 100 V, Q = 120 SLM): (a) The electrical signal curve of a gliding period; (b) gliding arc discharge image (left) and a cycle of gliding arc motion process image (right); (c) synchronization of gliding arc moving image and electric signal.

    图 4  A-G模式下的滑动弧放电的电信号及电弧运动图像(U0 = 100 V, Q = 40 SLM) (a)完整滑动周期的电信号曲线; (b)滑动弧放电图像(左)及完整周期的滑动弧运动过程图像(右); (c)滑动弧运动图像和电信号同步特征

    Figure 4.  Electric signal and arc image of rotating gliding arc discharge in A-G mode (U0 = 100 V, Q = 40 SLM): (a) The electrical signal curve of a gliding period; (b) gliding arc discharge image (left) and a cycle of gliding arc motion process image (right); (c) synchronization of gliding arc moving image and electric signal.

    图 5  滑动弧电弧运动图像和电信号变化的同步特征

    Figure 5.  Synchronization characteristics of gliding arc electric image and electric signal changes.

    图 6  旋转滑动弧放电模式及击穿频率统计图

    Figure 6.  Statistical diagram of rotational gliding arc discharge mode and breakdown frequency.

    图 7  不同工作参数下滑动弧击穿电流随电弧长度变化的统计图

    Figure 7.  Statistical diagram of the variation of gliding dynamic arc breakdown current with arc length under different working parameters.

    图 8  光谱采集位置分布示意图及滑动弧放电图像

    Figure 8.  Schematic diagram of the spectrum acquisition position distribution and gliding arc discharge image.

    图 9  8个光谱信号采集点的光谱曲线

    Figure 9.  8-point spectral curve

    图 10  不同气体流量、激励电压下的OH和O的特征波长的光谱发射强度 (a) OH (309 nm)光谱发射强度; (b) O (777.4 nm)光谱发射强度; (c) O (822.2 nm)光谱发射强度

    Figure 10.  Spectral emission intensity of OH and O characteristic wavelengths under different gas flow rates and excitation voltages: (a) OH (309 nm) spectral emission intensity; (b) O (777.4 nm) spectral emission intensity; (c) O (822.2 nm) Spectral emission intensity.

    图 11  滑动弧放电的工作机制示意图

    Figure 11.  Schematic diagram of control mechanism of gliding arc discharge characteristics.

    表 1  实验工况表

    Table 1.  Experimental conditions table.

    工况压力P/kPa激励电压U0/V气体流量Q/SLM
    110110040
    210110060
    310110090
    4101100120
    510115040
    610115060
    710115090
    8101150120
    DownLoad: CSV
  • [1]

    Czernichowski A 1994 Pure Appl. Chem. 66 061301

    [2]

    Czernichowski A, Czernichowski M 2005 17 th International Symposium On Plasma Chemistry Toronto, Canada, August 7–12, 2005 p001

    [3]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energy Combust. 25 0211Google Scholar

    [4]

    Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 04

    [5]

    Wu A J, Li X D, Yan J H, Zhu F S, Lu S Y 2016 Int. J. Hydrogen Energy 41 2222Google Scholar

    [6]

    Xia Y, Lu N, Wang B, Li J, Shang K F, Jiang N, Wu Y 2017 Int. J. Hydrogen Energy 42 001Google Scholar

    [7]

    Whitehead J C, Prantsidou M 2016 J. Phys. D: Appl. Phys. 49 154001Google Scholar

    [8]

    邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage Engineering 42 685

    [9]

    Zhang H, Zhu F S, Li X D, Xu R Y, Li L, Yan J H 2019 J. Hazard. Mater. 369 244Google Scholar

    [10]

    Xu R Y, Zhu F S, Zhang H, Ruya P M, Li L, Li X D 2020 Energy Fuels 34 2045Google Scholar

    [11]

    李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697

    Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Engineering 42 3697

    [12]

    Pawłat Joanna, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K 2019 Plasma Chem. Plasma Process. 39 627Google Scholar

    [13]

    Hameedl T A, Kadhem S J 2020 IOP Conf. Ser.: Mater. Sci. Eng. 757 012045Google Scholar

    [14]

    Ju Y G, Sun W T 2015 Prog. Energy Combust. 48 21Google Scholar

    [15]

    Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar

    [16]

    Kong C D, Gao J L, Zhu J J, Andreas E, Marcus A, Li Z S 2018 IEEE Trans. Plasma Sci. 47 403

    [17]

    Gray J A T, Lacoste D A 2019 Combust. Flame 199 258Google Scholar

    [18]

    牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 物理学报 64 195204Google Scholar

    Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Physica Sinica 64 195204Google Scholar

    [19]

    Kikuchi Y, Nakagawa T 2020 IEEE Trans. Plasma Sci. 99 001

    [20]

    何立明, 陈一, 刘兴建, 吴勇, 刘鹏飞, 张一汉 2016 高电压技术 42 1921

    He L M, Chen Y, Liu X J, Wu Y, Liu P X, Zhang Y H 2016 High Voltage Engineering 42 1921

    [21]

    Sun S R, Kolev S, Wang H X, Bogaerts A 2016 Plasma Sources Sci. Technol. 26 015003Google Scholar

    [22]

    Kolev S, Bogaerts A 2018 Plasma Sources Sci. Technol. 27 125011Google Scholar

    [23]

    Ananthanarasimhan J, Rao L, Shivapuji A, Dasappa S 2019 International Plasma Chemistry Society, Naples, Italy, June 9–14, ISPC-24

    [24]

    Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H 2015 IEEE Trans. Plasma Sci. 43 836Google Scholar

    [25]

    Zhang H, Zhu F S, Tu X, Bo Z, Li X D 2016 Plasma Sci. Technol. 18 473Google Scholar

    [26]

    何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061

    He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061

    [27]

    鲁娜, 孙丹凤, 王冰, 李杰, 吴彦 2018 高电压技术 44 1930

    Lu N, Sun D F, Wang B, Li J, Wu Y 2018 High Voltage Engineering 44 1930

    [28]

    Li L, Zhang H, Li X D, Kong X Z, Xu R Y, Tay K, Tu X 2019 J. CO2 Util. 29 296Google Scholar

    [29]

    Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770 001

    [30]

    李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 物理学报 67 075201Google Scholar

    Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar

    [31]

    李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022

    Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022

  • [1] Zhu Yan-Rong, Chang Zheng-Shi. Effects of pulse voltage rising edge on discharge evolution of He atmospheric pressure plasma jet in dielectric tube. Acta Physica Sinica, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [2] Zhang Lei, Yu Jin-Lu, Zhao Bing-Bing, Chen Zhao, Jiang Yong-Jian, Hu Chang-Huai, Cheng Hui-Neng, Guo Hao. Experimental investigation of discharge characteristics of alternating current rotating gliding arc discharge under high air pressure. Acta Physica Sinica, 2022, 71(7): 075204. doi: 10.7498/aps.71.20211232
    [3] Xie Ying, Zhu Zhi-Gang, Zhang Xiao-Feng, Ren Guo-Dong. Control of firing mode in nonlinear neuron circuit driven by photocurrent. Acta Physica Sinica, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [4] Huang Mei-Ting, Jiang Yin-Hua, Chen Yu-Qi, Li Run-Hua. Quantitative analysis of trace elements in bismuth brass with high repetition rate laser-ablation spark-induced breakdown spectrum. Acta Physica Sinica, 2021, 70(10): 104206. doi: 10.7498/aps.70.20202018
    [5] Effects of Pulse Voltage Rising Edge on the Discharge Evolution of He APPJ in Dielectric Tube. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210470
    [6] Dong Wan, Xu Hai-Wen, Dai Zhong-Ling, Song Yuan-Hong, Wang You-Nian. Gap length effect on discharge mode and etching profiles in asymmetric dual frequency capacitive CF4/Ar discharges. Acta Physica Sinica, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [7] Zhang Cun-Bo, Yan Tao, Yang Zhi-Qiang, Ren Wei-Tao, Zhu Zhan-Ping. heoretical model of influence of frequency on thermal breakdown in semiconductor device. Acta Physica Sinica, 2017, 66(1): 018501. doi: 10.7498/aps.66.018501
    [8] Zhou Qian-Hong, Sun Hui-Fang, Dong Zhi-Wei, Zhou Hai-Jing. Theoretical study on the microwave air breakdown threshold. Acta Physica Sinica, 2015, 64(17): 175202. doi: 10.7498/aps.64.175202
    [9] Li Dan, Hu Hai-Yun. Studies on the kinetic theory of polymer dielectric breakdown due to partial discharge. Acta Physica Sinica, 2014, 63(11): 117701. doi: 10.7498/aps.63.117701
    [10] Li Shi-Wen, Feng Guo-Ying, Li Wei, Han Jing-Hua, Zhou Sheng-Yang, Yin Jia-Jia, Yang Chao, Zhou Shou-Huan. Study on phase analysis of nanoparticles by high-voltage electrical explosion method of copper wire. Acta Physica Sinica, 2012, 61(22): 225206. doi: 10.7498/aps.61.225206
    [11] Wang Yu, Li Xiao-Dong, Yu Liang, Yan Jian-Hua. Numerical simulation study on characteristics of gliding arc discharge. Acta Physica Sinica, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [12] Guo Qing-Chao, Zhang Jia-Liang, Liu Li-Ying, Wang De-Zhen. Characterization on the temperature of radio frequency argon capacitive discharge mode transition at atmospheric pressure. Acta Physica Sinica, 2011, 60(2): 025207. doi: 10.7498/aps.60.025207
    [13] Shi Wei, Tian Li-Qiang, Wang Xin-Mei, Xu Ming, Ma De-Ming, Zhou Liang-Ji, Liu Hong-Wei, Xie Wei-Ping. A high-voltage and high-current photoconductive semiconductor switch and its breakdown characteristics. Acta Physica Sinica, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [14] Li Qi, Zhang Bo, Li Zhao-Ji. A new analytical model of breakdown voltage for the SD LDMOS. Acta Physica Sinica, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [15] Guo Liang-Liang, Feng Qian, Ma Xiang-Bai, Hao Yue, Liu Jie. Relation between breakdown voltage and current collapse in GaN FP-HEMTs. Acta Physica Sinica, 2007, 56(5): 2900-2904. doi: 10.7498/aps.56.2900
    [16] Lu Xiao, Wu Chuan-Gui, Zhang Wan-Li, Li Yan-Rong. Dielectric breakdown of BST thin films prepared by RF sputtering. Acta Physica Sinica, 2006, 55(5): 2513-2517. doi: 10.7498/aps.55.2513
    [17] Hasi Wu-Li-Ji, Lü Zhi-Wei, Li Qiang, Ba De-Xin, Zhang Yi, He Wei-Ming. Research on optical breakdown of SBS media. Acta Physica Sinica, 2006, 55(10): 5252-5256. doi: 10.7498/aps.55.5252
    [18] Hasi Wu-Li-Ji, Lü Zhi-Wei, He Wei-Ming, Li Qiang, Ba De-Xin. Influences of optical breakdown on stimulated Brillouin scattering. Acta Physica Sinica, 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [19] CHEN DOU-NAN, LIU BAI-YONG, ZHENG XUE-REN. STUDY ON THE BREAKDOWN MECHANISM OF A THIN SixOyNz FILM. Acta Physica Sinica, 1989, 38(1): 68-75. doi: 10.7498/aps.38.68
    [20] YANG SHI-CAI, WANG LONG. BREAKDOWN CONDITION IN A TOKAMAK. Acta Physica Sinica, 1987, 36(11): 1385-1394. doi: 10.7498/aps.36.1385
Metrics
  • Abstract views:  8631
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2020
  • Accepted Date:  27 June 2020
  • Available Online:  16 October 2020
  • Published Online:  05 October 2020

/

返回文章
返回