Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

On glass formation thermodynamics: Enthalpy vs. Entropy

Wang Li-Min Liu Ri-Ping Tian Yong-Jun

Citation:

On glass formation thermodynamics: Enthalpy vs. Entropy

Wang Li-Min, Liu Ri-Ping, Tian Yong-Jun
PDF
HTML
Get Citation
  • Glass formation thermodynamics usually concerns the liquid-crystal Gibbs free energy difference. But, in practice, its efficiency in predicting the occurrence of the glass transition of materials and guiding the composition design is quite quantitative. In particular, it remains to be clarified to understand the relationship between and the contributions to the two fundamental quantities of enthalpy and entropy involved herein. In this paper, we study the relation between the enthalpy and the entropy involved in glass formation of various materials, and find that they are strongly correlated with each other. Theoretical and experimental analyses indicate the intrinsic correlation of the entropy of fusion with other key parameters associated with glass formation like melting viscosity and enthalpy of mixing, which confirms the close relation between the entropy of fusion and glass formation. Close inspection finds that the low entropy of fusion benefits the glass formation. Owing to the fact that the two glass-formation key variables of viscosity and enthalpy can be addressed by the entropy of fusion, we propose that the entropy of fusion be able to serve as a representative thermodynamic quantity to understand the glass formation in materials. The reliability in understanding the glass formation in terms of entropy of fusion is further verified. The studies provide a new reference for developing the glass formation thermodynamics.
      Corresponding author: Wang Li-Min, limin_wang@ysu.edu.cn ; Liu Ri-Ping, riping@ysu.edu.cn ; Tian Yong-Jun, fhcl@ysu.edu.cn
    • Funds: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51421091), the National Key R&D Program of China (Grant No. 2018YFA0703602), the National Natural Science Foundation of China (Grant No. 51801174), and the High-level Talents Funded Projects of Hebei Province, China (Grant No. BJ2018021)
    [1]

    Anderson P W 1995 Science 267 1615Google Scholar

    [2]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S 2000 J. Appl. Phys. 88 3113Google Scholar

    [3]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [4]

    Turnbull D 1969 Contemp. Phys. 10 473Google Scholar

    [5]

    Turnbull D, Cohen M H 1960 Modern Aspects of the Vitreous State (London: Butterworth)

    [6]

    Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar

    [7]

    Schmentzer J 2005 Nucleation Theory and Applications (New York: Wiley-VCH)

    [8]

    Kalikmanov V I 2013 Nucleation Theory (Netherlands: Springer)

    [9]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [10]

    Jiang Z, Hu X, Zhao X 1982 J. Non-Cryst. Solids 52 235Google Scholar

    [11]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342Google Scholar

    [12]

    Highmore R J, Greer A L 1989 Nature 339 363Google Scholar

    [13]

    Ottou Abe M T, Viciosa M T, Correia N T, Affouard F 2018 Phys. Chem. Chem. Phys. 20 29528Google Scholar

    [14]

    Atawa B, Correia N T, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A 2019 Phys. Chem. Chem. Phys. 21 702

    [15]

    Kauzmann W 1949 Chem. Rev. 43 219

    [16]

    Angell C A 1995 Science 267 1924Google Scholar

    [17]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200Google Scholar

    [18]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K, 2005 Phys. Rev. Lett. 94 245501Google Scholar

    [19]

    Lu Z P, Ma D, Liu C T, Chang Y A 2007 Intermetallics 15 253Google Scholar

    [20]

    Yang B, Du Y, Liu Y 2009 Trans. Nonferrous Met. Soc. China 19 78Google Scholar

    [21]

    Chattopadhyay C, Satish Idury K S N, Bhatt J, Mondal K, Murty B S 2016 Mater. Sci. Technol. 32 380Google Scholar

    [22]

    Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671Google Scholar

    [23]

    Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar

    [24]

    Kim D, Lee B J, Kim N J 2004 Intermetallics 12 1103Google Scholar

    [25]

    Sun K H 1947 J. Am. Ceram. Soc. 30 277Google Scholar

    [26]

    Rawson H 1956 Proc. IV Intern. Congress on Glass (Paris: Impremenic Chaix) p62

    [27]

    Xia L, Li W H, Fang S S, Wei B C, Dong Y D 2006 J. Appl. Phys. 99 026103Google Scholar

    [28]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [29]

    Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372Google Scholar

    [30]

    Busch R, Liu W, Johnson W L 1998 J. Appl. Phys. 83 4134Google Scholar

    [31]

    Singh P K, Dubey K S 2010 J. Therm. Anal. Calorim. 100 347Google Scholar

    [32]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139Google Scholar

    [33]

    Perepezko J H 2004 Prog. Mater. Sci. 49 263Google Scholar

    [34]

    Fecht H J, Johnson W L 2004 Mater. Sci. Eng. A 375 2

    [35]

    Battezzati L 1994 Mater. Sci. Eng. A 178 43Google Scholar

    [36]

    Battezzati L, Castellero A, Rizzi P 2007 J. Non-Cryst. Solids 353 3318Google Scholar

    [37]

    Gallington L C, Bongiorno A 2010 J. Chem. Phys. 132 174707Google Scholar

    [38]

    Gutzow I, Schmelzer J W P, Petroff B 2008 J. Non-Cryst. Solids 354 311Google Scholar

    [39]

    Ji X, Pan Y 2007 J. Non-Cryst. Solids 353 2443Google Scholar

    [40]

    Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar

    [41]

    van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar

    [42]

    Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 NPJ Comput. Mater. 4 47Google Scholar

    [43]

    Ohsaka K, Trinh E H 1995 Appl. Phys. Lett. 66 3123Google Scholar

    [44]

    Goldstein M, 1969 J. Chem. Phys. 51 3728Google Scholar

    [45]

    Stillinger F H 1995 Science 267 1935Google Scholar

    [46]

    Angell C A 2005 Phil. Trans. R. Soc. A 363 415Google Scholar

    [47]

    Sastry S, Debenedetti P G, Stillinger F H 1998 Nature 393 554Google Scholar

    [48]

    Bhatt J, Wu J, Xia J H, Wang Q, Dong C, Murty B S 2007 Intermetallics 15 716Google Scholar

    [49]

    Ramakrishna Rao B, Gandhi A S, Vincent S, Bhatt J, Murty B S 2012 Trans. Indian Inst. Met. 65 559Google Scholar

    [50]

    Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841Google Scholar

    [51]

    Johnson W L, Na J H, Demetriou M D 2016 Nat. Commun. 7 1

    [52]

    Jiusti J, Zanotto E D, Cassar D R, Andreeta M R B 2020 J. Am. Ceram. Soc. 103 921Google Scholar

    [53]

    Minaev V S 1978 Amorphous Semiconductors-78 (Prague: AS ChSSR) p71

    [54]

    de Oliveira M F, Pereira F S, Bolfarini C, Kiminami C S, Botta W J 2009 Intermetallics 17 183Google Scholar

    [55]

    Benson S W 1947 J. Chem. Phys. 15 367Google Scholar

    [56]

    Myers R T 1979 J. Phys. Chem. 83 294Google Scholar

    [57]

    Wessel M D, Jurs P C 1995 J. Chem. Inf. Comput. Sci. 35 841Google Scholar

    [58]

    Wang L M, Richert R 2007 J. Phys. Chem. B. 111 3201Google Scholar

    [59]

    Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049Google Scholar

    [60]

    郑兆勃 1979 金属学报 15 155

    Zheng Z B 1979 Acta. Metall. Sin. 15 155

    [61]

    Hrubý A 1972 J. Phys. B 22 1187

    [62]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [63]

    Song W X, Zhao S J 2015 J. Chem. Phys. 142 144504Google Scholar

    [64]

    Miedema A R, de Châtel P F, de Boer F R 1980 Phys. B+C 100 1Google Scholar

    [65]

    Basu J, Murty B S, Ranganathan S 2008 J. Alloys Compd. 465 163Google Scholar

    [66]

    Das N, Kulkarni U D, Pabi S K, Murty B S, Dey G K 2008 Defect Diffus. Forum 279 147Google Scholar

    [67]

    Bhatt J, Dey G K, Murty B S 2008 Metall. Mater. Trans. A 39 1543Google Scholar

    [68]

    Ray P K, Akinc M, Kramer M J 2008 22 nd Annu. Conf. Foss. Energy Mater (Pittsburgh) 2008 p474

    [69]

    Weeber A W 1987 J. Phys. F: Met. Phys. 17 809Google Scholar

    [70]

    Pan Y, Zeng Y, Jing L, Zhang L, Pi J 2014 Mater. Des. 55 773Google Scholar

    [71]

    Miracle D B 2006 Acta Mater. 54 4317Google Scholar

    [72]

    Egami T, Waseda Y 1984 J. Non-Cryst. Solids 64 113Google Scholar

    [73]

    Gargarella P, de Oliveira M F, Kiminami S, Pauly S, Kühn U, Bolfarini C, Botta W J, Eckert J 2011 J. Alloys Compd. 50 9

    [74]

    Hu Y C, Schroers J, Shattuck M D, O’Hern C S 2019 Phys. Rev. Mater. 3 085602Google Scholar

    [75]

    Greer A L 1993 Nature 366 30

    [76]

    Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2Google Scholar

    [77]

    Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546Google Scholar

    [78]

    Zhao L R, Li Z J, Gao Y Q, Bo H, Liu Y D, Wang L M 2016 Intermetallics 71 18Google Scholar

    [79]

    Gibbs J H, DiMarzio E A 1958 J. Chem. Phys. 28 373Google Scholar

    [80]

    Mansoori G A, Carnahan N F, Starling K E, Leland Jr T W 1971 J. Chem. Phys. 54 1523Google Scholar

    [81]

    Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810Google Scholar

    [82]

    Guo J, Bian X, Li X, Zhang C 2010 Intermetallics 18 933Google Scholar

    [83]

    Li X, Song K, Wu Y, Ji H, Wang L 2013 Mater. Lett. 107 17Google Scholar

    [84]

    Vincent S, Peshwe D R, Murty B S, Bhatt J 2011 J. Non-Cryst. Solids 357 3495Google Scholar

    [85]

    Wang L M, Richert R 2007 Phys. Rev. Lett. 99 185701Google Scholar

    [86]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [87]

    Stillinger F H, Debenedetti P G 1999 J. Phys. Chem. B 103 4052Google Scholar

    [88]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901Google Scholar

    [89]

    Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1378Google Scholar

    [90]

    Uhlmann D R 1983 J. Am. Ceram. Soc. 66 95Google Scholar

    [91]

    Jackson K A 2002 Interface Sci. 10 159Google Scholar

    [92]

    Ediger M D, Harrowell P, Yu L 2008 J. Chem. Phys. 128 034709Google Scholar

    [93]

    Gutzow I, Schmelzer J 1995 The Vitreous State (Berlin-New York: Springer)

    [94]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620Google Scholar

    [95]

    Wang L M, Tian Y, Liu R, Wang W 2012 Appl. Phys. Lett. 100 261913Google Scholar

    [96]

    Senkov O N, Miracle D B, Mullens H M 2005 J. Appl. Phys. 97 103502Google Scholar

    [97]

    Turnbull D 1981 Metall. Trans. B 12 217Google Scholar

    [98]

    Li D, Herlach D M 1996 Phys. Rev. Lett. 77 1801Google Scholar

    [99]

    Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202Google Scholar

    [100]

    Hoffmann H J 2005 Phys. Chem. Glasses 46 570

    [101]

    Gao P, Tu W, Li P, Wang L M 2018 J. Alloys Compd. 736 12Google Scholar

    [102]

    Pelton A D, Degterov S A, Eriksson G, Robelin C, Dessureault Y 2000 Metall. Mater. Trans. B 31 651Google Scholar

    [103]

    Hillert M 2008 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (London: Cambridge University Press)

    [104]

    Qian H 1998 J. Chem. Phys. 109 10015Google Scholar

    [105]

    Meyer W V, Neldel H 1937 Z. Tech. Phys. 18 588

    [106]

    Constable F H 1925 Proc. R. Soc. London, Ser. A 108 355Google Scholar

    [107]

    Exner O 1964 Collection Czechoslov. Chem. Commun. 29 1094Google Scholar

    [108]

    Cornish-Bowden A 2002 J. Biosci. 27 121Google Scholar

    [109]

    Barrie P J 2012 Phys. Chem. Chem. Phys. 14 327Google Scholar

    [110]

    Graziano G 2004 J. Chem. Phys. 120 4467Google Scholar

    [111]

    赖国华, 周仁贤, 韩晓祥, 郑小明 2005 化学通报 12 928Google Scholar

    Lai G H, Zhou R X, Han X X, Zheng X M 2005 Chem. Bull. 12 928Google Scholar

    [112]

    Galwey A K 1977 Adv. Catal. 26 247

    [113]

    Starikov E B, Nordén B 2007 J. Phys. Chem. B 111 14431Google Scholar

    [114]

    Ryu S, Kang K, Cai W 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5174Google Scholar

    [115]

    Sharp K 2001 Protein Sci. 10 661Google Scholar

    [116]

    Eyring H 1935 J. Chem. Phys. 3 107Google Scholar

    [117]

    Liu L, Guo Q X 2001 Chem. Rev. 101 673Google Scholar

    [118]

    Pan A, Biswas T, Rakshit A K, Moulik S P 2015 J. Phys. Chem. B 119 15876Google Scholar

    [119]

    Shimakawa K, Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652Google Scholar

    [120]

    Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Lin D L, Hu Z Q 2000 Scr. Mater. 42 917Google Scholar

    [121]

    Wang Y J, Ishii A, Ogata S 2013 Acta Mater. 61 3866Google Scholar

    [122]

    Wang Y J, Zhang M, Liu L, Ogata S, Dai L H 2015 Phys. Rev. B 92 174118Google Scholar

    [123]

    Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429Google Scholar

    [124]

    Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503Google Scholar

    [125]

    Kubaschewski O, Evans A L, Alcock C B 1967 Metallurgical thermochemistry (New York: Pergamon Press) p427

    [126]

    Swalin R A, Arents J 1962 J. Electrochem. Soc. 109 308CGoogle Scholar

    [127]

    Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171Google Scholar

    [128]

    Greet R J, Magill J H 1967 J. Phys. Chem. 71 1746Google Scholar

    [129]

    Reiner M 1964 Phys. Today 17 62

    [130]

    Blackburn F R, Wang C Y, Ediger M D 1996 J. Phys. Chem. 100 18249Google Scholar

    [131]

    Senkov O N, Miracle D B 2003 J. Non-Cryst. Solids 317 34Google Scholar

    [132]

    Yang X, Liu R, Yang M, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003Google Scholar

    [133]

    Wei D, Yang J, Jiang M Q, Dai L H, Wang Y J, Dyre J C, Douglass I, Harrowell P 2019 J. Chem. Phys. 150 114502Google Scholar

    [134]

    Han D, Wei D, Yang J, Li H L, Jiang M Q, Wang Y J, Dai L H, Zaccone A 2020 Phys. Rev. B 101 014113Google Scholar

    [135]

    Nettleton R E, Green M S 1958 J. Chem. Phys. 29 1365Google Scholar

    [136]

    Mittal J, Errington J R, Truskett T M 2006 J. Chem. Phys. 125 076102Google Scholar

    [137]

    Tiwari G P, Juneja J M, Iijima Y 2004 J. Mater. Sci. 39 1535Google Scholar

    [138]

    Tiwari G P 1978 Met. Sci. Heat Treat. 12 317

    [139]

    Jackson K A 1969 Crystal Growth Kinetics and Morphology. In Kinetics of Reactions in Ionic Systems (Boston: Springer) p229

    [140]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816Google Scholar

    [141]

    Tallon J L 1980 Phys. Lett. A 76 139Google Scholar

    [142]

    Tallon J L 1989 Nature 342 658Google Scholar

    [143]

    Chen W, Wang Y, Qiang J, Dong C 2003 Acta Mater. 51 1899Google Scholar

    [144]

    Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar

    [145]

    Saini M K, Jin X, Wu T, Liu Y, Wang L M 2018 J. Chem. Phys. 148 124504Google Scholar

    [146]

    卢柯 1992 金属学报 2 8

    Lu K 1992 Acta Metall. Sin. 2 8

    [147]

    Wang L, Li Z, Chen Z, Zhao Y, Liu R, Tian Y 2010 J. Phys. Chem. B 114 12080Google Scholar

    [148]

    Zhang Y, Li P, Gao P, Tu W, Wang L M 2017 J. Mater. Sci. 52 2924Google Scholar

    [149]

    Kang H, Wang L M unpublished

    [150]

    Tu W, Li X, Chen Z, Liu Y D, Labardi M, Capaccioli S, Paluch M, Wang L M 2016 J. Chem. Phys. 144 174502Google Scholar

    [151]

    Wunderlich B 1960 J. Phys. Chem. 64 1052Google Scholar

    [152]

    Moynihan C T, Angell C A 2000 J. Non-Cryst. Solids 274 131Google Scholar

    [153]

    Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H 1999 J. Mol. Struct. 479 227Google Scholar

    [154]

    Mishra R K, Dubey K S 1997 J. Therm. Anal. 50 843Google Scholar

    [155]

    Chang S S, Bestul A B 1972 J. Chem. Phys. 56 503Google Scholar

    [156]

    Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505Google Scholar

    [157]

    Li P, Gao P, Liu Y, Wang L M 2017 J. Alloys Compd. 696 754Google Scholar

    [158]

    Ubbelohde A R 1978 The Molten State of Matter: Melting and Crystal Structure (Chichester: John Wiley & Sons)

    [159]

    Oriani R A 1951 J. Chem. Phys. 19 93Google Scholar

    [160]

    Martinez L M, Angell C A 2001 Nature 410 663Google Scholar

    [161]

    Lu Z P, Bei H, Liu C T 2007 Intermetallics 15 618Google Scholar

    [162]

    Battezzati L, Greer A L 1989 Acta Metall. 37 1791Google Scholar

    [163]

    Lide D R 2004 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)

    [164]

    Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y 2003 Phys. Rev. Lett. 91 015502Google Scholar

    [165]

    Carter C B, Norton M G 2013 Ceramic Materials: Science and Engineering (New York: Springer-Verlag)

    [166]

    Kelton K F 1991 Solid State Phys. 45 75Google Scholar

    [167]

    Kelton K F, Greer A L 1988 Phys. Rev. B 38 10089Google Scholar

    [168]

    Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184Google Scholar

    [169]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar

    [170]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)

    [171]

    Kolodziejczyk K, Paluch M, Grzybowska K, Grzybowski A, Wojnarowska Z, Hawelek L, Ziolo J D 2013 Mol. Pharmacol. 10 2270Google Scholar

    [172]

    Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 19780Google Scholar

    [173]

    Wu T, Jin X, Saini M K, Liu Y D, Ngai K L, Wang L M 2017 J. Chem. Phys. 147 134501Google Scholar

    [174]

    Sarjeant P T, Roy R 1968 Mater. Res. Bull. 3 265Google Scholar

    [175]

    Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Acta Mater. 52 3689Google Scholar

    [176]

    Li P F, Wang L M unpublished.

    [177]

    Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J 2009 Molecules 14 4337Google Scholar

    [178]

    Zhang Y, Gong H, Li P, Tian Y, Wang L M 2017 Mater. Lett. 194 149Google Scholar

    [179]

    Zanotto E D, Cassar D R 2017 Sci. Rep. 7 1Google Scholar

    [180]

    翟玉春 2017 非平衡态热力学 (北京: 科学出版社)

    Zhai Y C, 2017 Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese)

    [181]

    Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y, Wang L M 2019 Intermetallics 109 97Google Scholar

    [182]

    Wang Y, Yao J, Li Y 2018 J. Mater. Sci. Technol. 34 605Google Scholar

  • 图 1  基于体系焓H或者体积V变化表达的非晶转变示意图. 1—3代表不同的冷速得到的非晶态

    Figure 1.  Schematic of glass transition behaviors addressed by enthalpy or volume. Numbers of 1—3 define glassy states obtained at different quenching rates.

    图 2  非晶与液态的部分能量图景示意图

    Figure 2.  Schematic diagram of partial energy landscape of a glass and liquid.

    图 3  四种二元金属合金体系在共晶成分上的混合熵[78]

    Figure 3.  Entropies of mixing in four types of binary metallic alloys at their eutectic compositions[78].

    图 4  金属合金液固Gibbs自由能差在过冷区内温度关系[30,94], Tl为液相线温度

    Figure 4.  Temperature dependence of the difference of liquid-crystal Gibbs free energies in supercooled liquid regions of metallic alloys. Tl is the liquidus temperature[30,94].

    图 5  具有正、负混合热金属二元共晶体系中的过剩熔化熵[101]

    Figure 5.  Excess entropies of fusion in binary eutectic alloys showing positive and negative enthalpies of mixing[101].

    图 6  具有正、负混合热二元小分子共晶体系的过剩熔化熵. 左图为混合热测量曲线, 右图为共晶相图 (a), (b)、共晶点以及纯组元熔化熵(c), (d)和共晶成分过剩熔化熵(e), (f)[101]

    Figure 6.  Excess entropies of fusion in binary molecular eutectics of positive and negative enthalpies of mixing. Experimental measurements of the enthalpy of mixing is shown in left panel. (a) and (b) in the right panels are the phase diagrams; (c) and (d) show the entropies of fusion of eutectics and pure components; (e) and (f) give the excess entropies of fusion of eutectics[101].

    图 7  基于准化学模型在1000 ℃下计算的AB二元体系的摩尔混合热与混合熵. 假设A与B配位数为2, 短程序ΔgA-B分别为定值0, –21, –42和–84 kJ/mol四种情况[102]

    Figure 7.  Calculated enthalpies and entropies of mixing in a A-B binary system in terms of quasi-chemical model with the fixed coordination number of two but varied short-range ordering ΔgA-B of 0, –21, –42 and 84 kJ/mol[102].

    图 8  中间化合物Cu50Zr50在 (a) 玻璃态(I)和过(b)冷液态(II)弛豫激活动力学中的焓-熵补偿效应[122]

    Figure 8.  Enthalpy-entropy compensation behaviors for the activation behaviors of the relaxation dynamics in the glassy (I) (a) and supercooled liquid (II) (b)states of intermetallic Cu50Zr50[122].

    图 9  单羟基醇分子体系中非晶转变温度Tg与沸点Tb之间的关系[58]

    Figure 9.  Relationship between the glass transition temperature Tg and boiling temperature Tb of glass forming monoalcohols[58].

    图 10  简单二元相图(理想混合且固溶度为零)中液相线与熔化熵关系

    Figure 10.  Dependence of the liquidus on entropy of fusion in hypothetical binary phase diagrams featured by the ideal mixing and negligible solid solubility.

    图 11  四个二元碲基窄带隙合金的非晶形成能力图和相图. 左图为SnTe分别与Bi2Te3 (a), Sb2Te3 (b), In2Te3(c)和Ga2Te3 (d)构成的二元体系不同组分熔体淬火样品的XRD图, 右图为相对应的二元相图, 显示固溶度的变化趋势[148]

    Figure 11.  Phase diagrams and glass forming ability in four binary Tellurium-based alloys. Left panel shows the XRD patterns of the samples obtained by water-quenching in the SnTe alloys with Bi2Te3 (a), Sb2Te3 (b), In2Te3 (c) and Ga2Te3 (d). Binary phase diagrams are presented in the right panel showing the variation of solid solubility[148].

    图 12  金属合金与小分子非晶形成体系归一化熔化熵与熔点粘度关系[150], 实线表示数据趋势

    Figure 12.  Dependence of the melting viscosity on entropy of fusion in metallic and molecular glass-formers. Solid line guides the eye[150].

    图 13  不同非晶形成体系的约化熔化熵与经典非晶形成参量Tg/Tm关系

    Figure 13.  Dependence of the reduced glass transition Tg/Tm on entropy of fusion in various glass forming systems.

    图 14  金属与无机材料的归一化熔化熵. n为一个分子中的原子数

    Figure 14.  Normalized entropies of fusion in various metallic and inorganic materials. The parameter of n defines the atomic number of a molecule.

    图 15  金属合金的熔化熵与非晶形成临界冷却速率的关系. 实验数据基于文献[95], 曲线由(19)式计算确定

    Figure 15.  Dependence of the critical cooling rate of glass formation on entropy of fusion in metallic alloys. The data are obtained from Ref. 95 and, the solid curve is calculated in terms of equation (19).

    图 16  硫族化合物熔化熵与非晶形成临界冷却速率的关系. 实线是参考(19)式的拟合曲线

    Figure 16.  Dependence of the critical cooling rate of glass formation on entropy of fusion in glass forming chalcogenides. The solid line is the fitting curve using equation (19).

  • [1]

    Anderson P W 1995 Science 267 1615Google Scholar

    [2]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S 2000 J. Appl. Phys. 88 3113Google Scholar

    [3]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [4]

    Turnbull D 1969 Contemp. Phys. 10 473Google Scholar

    [5]

    Turnbull D, Cohen M H 1960 Modern Aspects of the Vitreous State (London: Butterworth)

    [6]

    Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar

    [7]

    Schmentzer J 2005 Nucleation Theory and Applications (New York: Wiley-VCH)

    [8]

    Kalikmanov V I 2013 Nucleation Theory (Netherlands: Springer)

    [9]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [10]

    Jiang Z, Hu X, Zhao X 1982 J. Non-Cryst. Solids 52 235Google Scholar

    [11]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342Google Scholar

    [12]

    Highmore R J, Greer A L 1989 Nature 339 363Google Scholar

    [13]

    Ottou Abe M T, Viciosa M T, Correia N T, Affouard F 2018 Phys. Chem. Chem. Phys. 20 29528Google Scholar

    [14]

    Atawa B, Correia N T, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A 2019 Phys. Chem. Chem. Phys. 21 702

    [15]

    Kauzmann W 1949 Chem. Rev. 43 219

    [16]

    Angell C A 1995 Science 267 1924Google Scholar

    [17]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200Google Scholar

    [18]

    Mukherjee S, Schroers J, Johnson W L, Rhim W K, 2005 Phys. Rev. Lett. 94 245501Google Scholar

    [19]

    Lu Z P, Ma D, Liu C T, Chang Y A 2007 Intermetallics 15 253Google Scholar

    [20]

    Yang B, Du Y, Liu Y 2009 Trans. Nonferrous Met. Soc. China 19 78Google Scholar

    [21]

    Chattopadhyay C, Satish Idury K S N, Bhatt J, Mondal K, Murty B S 2016 Mater. Sci. Technol. 32 380Google Scholar

    [22]

    Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671Google Scholar

    [23]

    Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar

    [24]

    Kim D, Lee B J, Kim N J 2004 Intermetallics 12 1103Google Scholar

    [25]

    Sun K H 1947 J. Am. Ceram. Soc. 30 277Google Scholar

    [26]

    Rawson H 1956 Proc. IV Intern. Congress on Glass (Paris: Impremenic Chaix) p62

    [27]

    Xia L, Li W H, Fang S S, Wei B C, Dong Y D 2006 J. Appl. Phys. 99 026103Google Scholar

    [28]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [29]

    Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372Google Scholar

    [30]

    Busch R, Liu W, Johnson W L 1998 J. Appl. Phys. 83 4134Google Scholar

    [31]

    Singh P K, Dubey K S 2010 J. Therm. Anal. Calorim. 100 347Google Scholar

    [32]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139Google Scholar

    [33]

    Perepezko J H 2004 Prog. Mater. Sci. 49 263Google Scholar

    [34]

    Fecht H J, Johnson W L 2004 Mater. Sci. Eng. A 375 2

    [35]

    Battezzati L 1994 Mater. Sci. Eng. A 178 43Google Scholar

    [36]

    Battezzati L, Castellero A, Rizzi P 2007 J. Non-Cryst. Solids 353 3318Google Scholar

    [37]

    Gallington L C, Bongiorno A 2010 J. Chem. Phys. 132 174707Google Scholar

    [38]

    Gutzow I, Schmelzer J W P, Petroff B 2008 J. Non-Cryst. Solids 354 311Google Scholar

    [39]

    Ji X, Pan Y 2007 J. Non-Cryst. Solids 353 2443Google Scholar

    [40]

    Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar

    [41]

    van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar

    [42]

    Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 NPJ Comput. Mater. 4 47Google Scholar

    [43]

    Ohsaka K, Trinh E H 1995 Appl. Phys. Lett. 66 3123Google Scholar

    [44]

    Goldstein M, 1969 J. Chem. Phys. 51 3728Google Scholar

    [45]

    Stillinger F H 1995 Science 267 1935Google Scholar

    [46]

    Angell C A 2005 Phil. Trans. R. Soc. A 363 415Google Scholar

    [47]

    Sastry S, Debenedetti P G, Stillinger F H 1998 Nature 393 554Google Scholar

    [48]

    Bhatt J, Wu J, Xia J H, Wang Q, Dong C, Murty B S 2007 Intermetallics 15 716Google Scholar

    [49]

    Ramakrishna Rao B, Gandhi A S, Vincent S, Bhatt J, Murty B S 2012 Trans. Indian Inst. Met. 65 559Google Scholar

    [50]

    Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841Google Scholar

    [51]

    Johnson W L, Na J H, Demetriou M D 2016 Nat. Commun. 7 1

    [52]

    Jiusti J, Zanotto E D, Cassar D R, Andreeta M R B 2020 J. Am. Ceram. Soc. 103 921Google Scholar

    [53]

    Minaev V S 1978 Amorphous Semiconductors-78 (Prague: AS ChSSR) p71

    [54]

    de Oliveira M F, Pereira F S, Bolfarini C, Kiminami C S, Botta W J 2009 Intermetallics 17 183Google Scholar

    [55]

    Benson S W 1947 J. Chem. Phys. 15 367Google Scholar

    [56]

    Myers R T 1979 J. Phys. Chem. 83 294Google Scholar

    [57]

    Wessel M D, Jurs P C 1995 J. Chem. Inf. Comput. Sci. 35 841Google Scholar

    [58]

    Wang L M, Richert R 2007 J. Phys. Chem. B. 111 3201Google Scholar

    [59]

    Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049Google Scholar

    [60]

    郑兆勃 1979 金属学报 15 155

    Zheng Z B 1979 Acta. Metall. Sin. 15 155

    [61]

    Hrubý A 1972 J. Phys. B 22 1187

    [62]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [63]

    Song W X, Zhao S J 2015 J. Chem. Phys. 142 144504Google Scholar

    [64]

    Miedema A R, de Châtel P F, de Boer F R 1980 Phys. B+C 100 1Google Scholar

    [65]

    Basu J, Murty B S, Ranganathan S 2008 J. Alloys Compd. 465 163Google Scholar

    [66]

    Das N, Kulkarni U D, Pabi S K, Murty B S, Dey G K 2008 Defect Diffus. Forum 279 147Google Scholar

    [67]

    Bhatt J, Dey G K, Murty B S 2008 Metall. Mater. Trans. A 39 1543Google Scholar

    [68]

    Ray P K, Akinc M, Kramer M J 2008 22 nd Annu. Conf. Foss. Energy Mater (Pittsburgh) 2008 p474

    [69]

    Weeber A W 1987 J. Phys. F: Met. Phys. 17 809Google Scholar

    [70]

    Pan Y, Zeng Y, Jing L, Zhang L, Pi J 2014 Mater. Des. 55 773Google Scholar

    [71]

    Miracle D B 2006 Acta Mater. 54 4317Google Scholar

    [72]

    Egami T, Waseda Y 1984 J. Non-Cryst. Solids 64 113Google Scholar

    [73]

    Gargarella P, de Oliveira M F, Kiminami S, Pauly S, Kühn U, Bolfarini C, Botta W J, Eckert J 2011 J. Alloys Compd. 50 9

    [74]

    Hu Y C, Schroers J, Shattuck M D, O’Hern C S 2019 Phys. Rev. Mater. 3 085602Google Scholar

    [75]

    Greer A L 1993 Nature 366 30

    [76]

    Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2Google Scholar

    [77]

    Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546Google Scholar

    [78]

    Zhao L R, Li Z J, Gao Y Q, Bo H, Liu Y D, Wang L M 2016 Intermetallics 71 18Google Scholar

    [79]

    Gibbs J H, DiMarzio E A 1958 J. Chem. Phys. 28 373Google Scholar

    [80]

    Mansoori G A, Carnahan N F, Starling K E, Leland Jr T W 1971 J. Chem. Phys. 54 1523Google Scholar

    [81]

    Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810Google Scholar

    [82]

    Guo J, Bian X, Li X, Zhang C 2010 Intermetallics 18 933Google Scholar

    [83]

    Li X, Song K, Wu Y, Ji H, Wang L 2013 Mater. Lett. 107 17Google Scholar

    [84]

    Vincent S, Peshwe D R, Murty B S, Bhatt J 2011 J. Non-Cryst. Solids 357 3495Google Scholar

    [85]

    Wang L M, Richert R 2007 Phys. Rev. Lett. 99 185701Google Scholar

    [86]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [87]

    Stillinger F H, Debenedetti P G 1999 J. Phys. Chem. B 103 4052Google Scholar

    [88]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901Google Scholar

    [89]

    Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1378Google Scholar

    [90]

    Uhlmann D R 1983 J. Am. Ceram. Soc. 66 95Google Scholar

    [91]

    Jackson K A 2002 Interface Sci. 10 159Google Scholar

    [92]

    Ediger M D, Harrowell P, Yu L 2008 J. Chem. Phys. 128 034709Google Scholar

    [93]

    Gutzow I, Schmelzer J 1995 The Vitreous State (Berlin-New York: Springer)

    [94]

    Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620Google Scholar

    [95]

    Wang L M, Tian Y, Liu R, Wang W 2012 Appl. Phys. Lett. 100 261913Google Scholar

    [96]

    Senkov O N, Miracle D B, Mullens H M 2005 J. Appl. Phys. 97 103502Google Scholar

    [97]

    Turnbull D 1981 Metall. Trans. B 12 217Google Scholar

    [98]

    Li D, Herlach D M 1996 Phys. Rev. Lett. 77 1801Google Scholar

    [99]

    Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202Google Scholar

    [100]

    Hoffmann H J 2005 Phys. Chem. Glasses 46 570

    [101]

    Gao P, Tu W, Li P, Wang L M 2018 J. Alloys Compd. 736 12Google Scholar

    [102]

    Pelton A D, Degterov S A, Eriksson G, Robelin C, Dessureault Y 2000 Metall. Mater. Trans. B 31 651Google Scholar

    [103]

    Hillert M 2008 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (London: Cambridge University Press)

    [104]

    Qian H 1998 J. Chem. Phys. 109 10015Google Scholar

    [105]

    Meyer W V, Neldel H 1937 Z. Tech. Phys. 18 588

    [106]

    Constable F H 1925 Proc. R. Soc. London, Ser. A 108 355Google Scholar

    [107]

    Exner O 1964 Collection Czechoslov. Chem. Commun. 29 1094Google Scholar

    [108]

    Cornish-Bowden A 2002 J. Biosci. 27 121Google Scholar

    [109]

    Barrie P J 2012 Phys. Chem. Chem. Phys. 14 327Google Scholar

    [110]

    Graziano G 2004 J. Chem. Phys. 120 4467Google Scholar

    [111]

    赖国华, 周仁贤, 韩晓祥, 郑小明 2005 化学通报 12 928Google Scholar

    Lai G H, Zhou R X, Han X X, Zheng X M 2005 Chem. Bull. 12 928Google Scholar

    [112]

    Galwey A K 1977 Adv. Catal. 26 247

    [113]

    Starikov E B, Nordén B 2007 J. Phys. Chem. B 111 14431Google Scholar

    [114]

    Ryu S, Kang K, Cai W 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5174Google Scholar

    [115]

    Sharp K 2001 Protein Sci. 10 661Google Scholar

    [116]

    Eyring H 1935 J. Chem. Phys. 3 107Google Scholar

    [117]

    Liu L, Guo Q X 2001 Chem. Rev. 101 673Google Scholar

    [118]

    Pan A, Biswas T, Rakshit A K, Moulik S P 2015 J. Phys. Chem. B 119 15876Google Scholar

    [119]

    Shimakawa K, Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652Google Scholar

    [120]

    Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Lin D L, Hu Z Q 2000 Scr. Mater. 42 917Google Scholar

    [121]

    Wang Y J, Ishii A, Ogata S 2013 Acta Mater. 61 3866Google Scholar

    [122]

    Wang Y J, Zhang M, Liu L, Ogata S, Dai L H 2015 Phys. Rev. B 92 174118Google Scholar

    [123]

    Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429Google Scholar

    [124]

    Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503Google Scholar

    [125]

    Kubaschewski O, Evans A L, Alcock C B 1967 Metallurgical thermochemistry (New York: Pergamon Press) p427

    [126]

    Swalin R A, Arents J 1962 J. Electrochem. Soc. 109 308CGoogle Scholar

    [127]

    Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171Google Scholar

    [128]

    Greet R J, Magill J H 1967 J. Phys. Chem. 71 1746Google Scholar

    [129]

    Reiner M 1964 Phys. Today 17 62

    [130]

    Blackburn F R, Wang C Y, Ediger M D 1996 J. Phys. Chem. 100 18249Google Scholar

    [131]

    Senkov O N, Miracle D B 2003 J. Non-Cryst. Solids 317 34Google Scholar

    [132]

    Yang X, Liu R, Yang M, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003Google Scholar

    [133]

    Wei D, Yang J, Jiang M Q, Dai L H, Wang Y J, Dyre J C, Douglass I, Harrowell P 2019 J. Chem. Phys. 150 114502Google Scholar

    [134]

    Han D, Wei D, Yang J, Li H L, Jiang M Q, Wang Y J, Dai L H, Zaccone A 2020 Phys. Rev. B 101 014113Google Scholar

    [135]

    Nettleton R E, Green M S 1958 J. Chem. Phys. 29 1365Google Scholar

    [136]

    Mittal J, Errington J R, Truskett T M 2006 J. Chem. Phys. 125 076102Google Scholar

    [137]

    Tiwari G P, Juneja J M, Iijima Y 2004 J. Mater. Sci. 39 1535Google Scholar

    [138]

    Tiwari G P 1978 Met. Sci. Heat Treat. 12 317

    [139]

    Jackson K A 1969 Crystal Growth Kinetics and Morphology. In Kinetics of Reactions in Ionic Systems (Boston: Springer) p229

    [140]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816Google Scholar

    [141]

    Tallon J L 1980 Phys. Lett. A 76 139Google Scholar

    [142]

    Tallon J L 1989 Nature 342 658Google Scholar

    [143]

    Chen W, Wang Y, Qiang J, Dong C 2003 Acta Mater. 51 1899Google Scholar

    [144]

    Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar

    [145]

    Saini M K, Jin X, Wu T, Liu Y, Wang L M 2018 J. Chem. Phys. 148 124504Google Scholar

    [146]

    卢柯 1992 金属学报 2 8

    Lu K 1992 Acta Metall. Sin. 2 8

    [147]

    Wang L, Li Z, Chen Z, Zhao Y, Liu R, Tian Y 2010 J. Phys. Chem. B 114 12080Google Scholar

    [148]

    Zhang Y, Li P, Gao P, Tu W, Wang L M 2017 J. Mater. Sci. 52 2924Google Scholar

    [149]

    Kang H, Wang L M unpublished

    [150]

    Tu W, Li X, Chen Z, Liu Y D, Labardi M, Capaccioli S, Paluch M, Wang L M 2016 J. Chem. Phys. 144 174502Google Scholar

    [151]

    Wunderlich B 1960 J. Phys. Chem. 64 1052Google Scholar

    [152]

    Moynihan C T, Angell C A 2000 J. Non-Cryst. Solids 274 131Google Scholar

    [153]

    Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H 1999 J. Mol. Struct. 479 227Google Scholar

    [154]

    Mishra R K, Dubey K S 1997 J. Therm. Anal. 50 843Google Scholar

    [155]

    Chang S S, Bestul A B 1972 J. Chem. Phys. 56 503Google Scholar

    [156]

    Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505Google Scholar

    [157]

    Li P, Gao P, Liu Y, Wang L M 2017 J. Alloys Compd. 696 754Google Scholar

    [158]

    Ubbelohde A R 1978 The Molten State of Matter: Melting and Crystal Structure (Chichester: John Wiley & Sons)

    [159]

    Oriani R A 1951 J. Chem. Phys. 19 93Google Scholar

    [160]

    Martinez L M, Angell C A 2001 Nature 410 663Google Scholar

    [161]

    Lu Z P, Bei H, Liu C T 2007 Intermetallics 15 618Google Scholar

    [162]

    Battezzati L, Greer A L 1989 Acta Metall. 37 1791Google Scholar

    [163]

    Lide D R 2004 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)

    [164]

    Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y 2003 Phys. Rev. Lett. 91 015502Google Scholar

    [165]

    Carter C B, Norton M G 2013 Ceramic Materials: Science and Engineering (New York: Springer-Verlag)

    [166]

    Kelton K F 1991 Solid State Phys. 45 75Google Scholar

    [167]

    Kelton K F, Greer A L 1988 Phys. Rev. B 38 10089Google Scholar

    [168]

    Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184Google Scholar

    [169]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar

    [170]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)

    [171]

    Kolodziejczyk K, Paluch M, Grzybowska K, Grzybowski A, Wojnarowska Z, Hawelek L, Ziolo J D 2013 Mol. Pharmacol. 10 2270Google Scholar

    [172]

    Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 19780Google Scholar

    [173]

    Wu T, Jin X, Saini M K, Liu Y D, Ngai K L, Wang L M 2017 J. Chem. Phys. 147 134501Google Scholar

    [174]

    Sarjeant P T, Roy R 1968 Mater. Res. Bull. 3 265Google Scholar

    [175]

    Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Acta Mater. 52 3689Google Scholar

    [176]

    Li P F, Wang L M unpublished.

    [177]

    Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J 2009 Molecules 14 4337Google Scholar

    [178]

    Zhang Y, Gong H, Li P, Tian Y, Wang L M 2017 Mater. Lett. 194 149Google Scholar

    [179]

    Zanotto E D, Cassar D R 2017 Sci. Rep. 7 1Google Scholar

    [180]

    翟玉春 2017 非平衡态热力学 (北京: 科学出版社)

    Zhai Y C, 2017 Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese)

    [181]

    Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y, Wang L M 2019 Intermetallics 109 97Google Scholar

    [182]

    Wang Y, Yao J, Li Y 2018 J. Mater. Sci. Technol. 34 605Google Scholar

  • [1] Xu Shan-Sen, Chang Jian, Zhai Bin, Zhu Xian-Nian, Wei Bing-Bo. Microscopic structure evolution and amorphous solidification mechanism of liquid quinary Zr57Cu20Al10Ni8Ti5 alloy. Acta Physica Sinica, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [2] Wu Bo-Wen, Hu Liang, Geng De-Lu, Wei Bing-Bo. Metastable phase separation and duplex metallic glass formation of liquid Zr35Al23Ni22Gd20 alloy. Acta Physica Sinica, 2023, 72(21): 216401. doi: 10.7498/aps.72.20231002
    [3] Sun Ji, Shen Peng-Fei, Shang Qi-Zhong, Zhang Peng-Yan, Liu Li, Li Ming-Rui, Hou Long, Li Wei-Huo. Effects of adding B element on amorphous forming ability, magnetic properties, and mechanical properties of FePBCCu alloy. Acta Physica Sinica, 2023, 72(2): 026101. doi: 10.7498/aps.72.20221553
    [4] Ma Shuang, Hao Wei-Ye, Wang Xu-Dong, Zhang Wei, Yao Man. Mechanism analysis of metalloid elements affecting amorphous forming ability and magnetic properties of Co-Y-B alloy. Acta Physica Sinica, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [5] Wang Zi, Ren Jie. Nonequilibrium thermal transport and thermodynamic geometry in periodically driven systems. Acta Physica Sinica, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [6] Shen Jue, Liu Cheng-Zhou, Zhu Ning-Ning, Tong Yi-Nuo, Yan Chen-Cheng, Xue Ke-Lei. Thermodynamics and its quantum correction of non-commutative Schwarichild black hole. Acta Physica Sinica, 2019, 68(20): 200401. doi: 10.7498/aps.68.20191054
    [7] Jin Xiao, Wang Li-Min. Enthalpy relaxation studies of memory effect in various glass formers in the vicinity of glass transition. Acta Physica Sinica, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [8] Aili Mieralimujiang, Mamat Mamatrishat, Ghupur Yasenjan. Thermodynamic properties of harmonic oscillator system in noncommutative phase space. Acta Physica Sinica, 2015, 64(14): 140201. doi: 10.7498/aps.64.140201
    [9] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [10] Zhang Ya-Nan, Wang You-Jun, Kong Ling-Ti, Li Jin-Fu. Influence of Y addition on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy. Acta Physica Sinica, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [11] Chen Ji-Xiang, Qiang Jian-Bing, Wang Qing, Dong Chuang. Defining nearest neighbor clusters in alloy phases using radial distribution of atomic density. Acta Physica Sinica, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [12] Zhang Hui, Zhang Guo-Ying, Yang Shuang, Wu Di, Qi Ke-Zhen. Effects of additional element on the glass forming ability and corrosion resistance of bulk Zr-based amorphous alloys. Acta Physica Sinica, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [13] Zhao Jiu-Zhou, Liu Jun, Zhao Yi, Hu Zhuang-Qi. Molecular dynamics simulation of the pressure effect on the formation of glassy Cu. Acta Physica Sinica, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [14] Wang Xiu-Ying, Chen Ying, Zhang Ning-Yu, Zhao Li-Ping, Pang Yan-Tao, Wang Wen-Kui. Effect of pressure on the glass transition and crystallization dynamics of Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk amorphous alloy. Acta Physica Sinica, 2007, 56(7): 4004-4008. doi: 10.7498/aps.56.4004
    [15] Fang Qi, Wang Qing, Zhao Zhe-Long, Dong Yuan-Da. Effect of Nb addition on the glass transition and crystallization kinetics of bulk Cu-Zr metallic glasses. Acta Physica Sinica, 2007, 56(3): 1292-1296. doi: 10.7498/aps.56.1292
    [16] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating the critical cooling rate of bulk metallic glass under non-isothermal condition. Acta Physica Sinica, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [17] Song Xiao-Yan, Gao Jin-Ping, Zhang Jiu-Xing. Thermodynamic functions of nanocrystals and its application to the study of phase transformations. Acta Physica Sinica, 2005, 54(3): 1313-1319. doi: 10.7498/aps.54.1313
    [18] Chen Zhi-Hao, Liu Lan-Jun, Zhang Bo, Xi Yun, Wang Qiang, Zu Fang-Qiu. Glass transition kinetic property of novel bulk Zr-Al-Ni-Cu (Nb,Ti) amorphous alloy*. Acta Physica Sinica, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
    [19] WANG WEI-HUA, BAI HAI-YANG, ZHANG YUN, CHEN HONG, WANG WEN-KUI. THERMODYNAMIC AND KINETIC ASPECTS OF SOLID STATE AMORPHIZATION REACTION IN Ni/a-Si MULTILAYER SYSTEM. Acta Physica Sinica, 1993, 42(9): 1499-1504. doi: 10.7498/aps.42.1499
    [20] MENG RU-LING, ZHOU PING, ZHAO ZHONG-XIAN, GUO SHU-QUAN, LI LIN. THE SUPERCONDUCTING TRANSITION TEMPERATURE AND COMPOSITION RANG FOR THE FORMATION OF AN AMORPHOUS PHASE IN THE MoxGe1-x, MoxSi1-x FILMS. Acta Physica Sinica, 1984, 33(5): 714-717. doi: 10.7498/aps.33.714
Metrics
  • Abstract views:  12774
  • PDF Downloads:  583
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2020
  • Accepted Date:  16 June 2020
  • Available Online:  30 September 2020
  • Published Online:  05 October 2020

/

返回文章
返回