Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent research progress of non-noble metal based surface-enhanced Raman scattering substrates

Liu Xiao-Hong Jiang Shan Chang Lin Zhang Wei

Citation:

Recent research progress of non-noble metal based surface-enhanced Raman scattering substrates

Liu Xiao-Hong, Jiang Shan, Chang Lin, Zhang Wei
PDF
HTML
Get Citation
  • Surface-enhanced Raman scattering (SERS) is of great importance in analytical science, the noble-metal such as gold and silver are widely used in SERS research and applications. However, noble-metal based substrates are hampered in practical application. As for comparison, the Non-noble metal especially the semiconductor materials are the emerging SERS research frontier. Non-noble metal (such as C, Ti, Zn, Cu, Mo, W, etc.) nanomaterials based SERS substrate have been widely studied and applied due to their superior stability, selectivity, biocompatibility and low cost comparing to noble metal materials. As the chemical enhancement dominate its total SERS signals, it also provides an ideal platform for the investigation of chemical enhancement mechanism. In this review, we explored the development of non-noble metal SERS substrates, focusing on its enhancement mechanism and SERS performance of different materials as well as the future development direction.
      Corresponding author: Zhang Wei, andyzhangwei@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575196), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0663), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN201904102), and the Scientific and Technological Program Project of Beibei, China (Grant No. 2019-2)
    [1]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163Google Scholar

    [2]

    Moskovits M 1978 J. Chem. Phys. 69 4159Google Scholar

    [3]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [4]

    Ji W, Zhao B, Ozaki Y 2016 J. Raman Spectrosc. 47 51Google Scholar

    [5]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [6]

    Xue X, Ji W, Mao Z, Mao H, Wang Y, Wang X, Ruan W, Zhao B, Lombardi J R 2012 J. Phys. Chem. C 116 8792Google Scholar

    [7]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photonics 3 1164Google Scholar

    [8]

    Tan Y, Gu J, Xu W, Chen Z, Liu D, Liu Q, Zhang D 2013 ACS Appl. Mater. Interfaces 5 9878Google Scholar

    [9]

    Daglar B, Khudiyev T, Demirel G B, Buyukserin F, Bayindir M 2013 J. Mater. Chem. C 1 7842Google Scholar

    [10]

    赵冰, 徐蔚青, 阮伟东, 韩晓霞 2008 高等学校化学学报 29 2591Google Scholar

    Zhao B, Xu W Q, Ruan W D, Han X X 2008 Chem. J. Chin. Univ. 29 2591Google Scholar

    [11]

    Wang X, Guo L 2020 Angew. Chem. Int. Ed. 59 4231Google Scholar

    [12]

    Zhang Q, Li X, Ma Q, Zhang Q, Bai H, Yi W, Liu J, Han J, Xi G 2017 Nat. Commun. 8 14903Google Scholar

    [13]

    Shi L, Tuzer T U, Fenollosa R, Meseguer F 2012 Adv. Mater. 24 5934Google Scholar

    [14]

    Ji W, Li L, Song W, Wang X, Zhao B, Ozaki Y 2019 Angew. Chem. Int. Ed. 58 14452Google Scholar

    [15]

    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2008 J. Phys. Chem. C 112 20095Google Scholar

    [16]

    Jung N, Crowthe A C, Kim N, Kim P, Brus L 2010 ACS Nano 4 7005Google Scholar

    [17]

    Feng S, Santos M C D, Carvalho B R, et al. 2016 Sci. Adv. 2 1600322Google Scholar

    [18]

    Huang S, Ling X, Liang L, Song Y, Fang W, Zhang J, Kong J, Meunier V, Dresselhaus M S 2015 Nano Lett. 15 2892Google Scholar

    [19]

    Begliarbekov M, Sul O, Santanello J, Ai N, Zhang X, Yang E H, Strauf S 2011 Nano Lett. 11 1254Google Scholar

    [20]

    Papadakis D, Diamantopoulou A, Pantazopoulos P A, et al. 2019 Nanoscale 11 21542Google Scholar

    [21]

    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2009 J. Raman Spectrosc. 40 2004Google Scholar

    [22]

    Yang L, Zhang Y, Ruan W, Zhao B, Xu W, Lombardi J R 2010 J. Raman Spectrosc. 41 721Google Scholar

    [23]

    Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K 2020 Nanoscale Horiz. 5 294Google Scholar

    [24]

    Wang X, Shi W, Wang S, Zhao H, Lin J, Yang Z, Chen M, Guo L 2019 J. Am. Chem. Soc. 141 5856Google Scholar

    [25]

    Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A 2020 ACS Appl. Mater. Interfaces 12 4204Google Scholar

    [26]

    Alessandri I 2013 J. Am. Chem. Soc. 135 5541Google Scholar

    [27]

    Qi D, Lu L, Wang L, Zhang J 2014 J. Am. Chem. Soc. 136 9886Google Scholar

    [28]

    Sarycheva A, Makaryan T, Maleski K, et al. 2017 J. Phys. Chem. C 121 19983Google Scholar

    [29]

    Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794Google Scholar

    [30]

    Wen H, He T J, Xu C Y, Zuo J, Liu F C 1996 Mol. Phys. 88 281Google Scholar

    [31]

    Sun Z, Zhao B, Lombardi J R 2007 Appl. Phys. Lett. 91 221106Google Scholar

    [32]

    Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, Guo L 2017 Angew. Chem. Int. Ed. 56 9851Google Scholar

    [33]

    Zhao X, Deng M, Rao G, et al. 2018 Small 14 1802477Google Scholar

    [34]

    Li X, Shang Y, Lin J, Li A, Wang X, Li B, Guo L 2018 Adv. Funct. Mater. 28 1801868Google Scholar

    [35]

    Li X, Ren X, Zhang Y, Choy W C, Wei B 2015 Nanoscale 7 11291Google Scholar

    [36]

    Wang R C, Li C H 2011 Acta Mater. 59 822Google Scholar

    [37]

    Lin J, Hao W, Shang Y, Wang X, Qiu D, Ma G, Chen C, Li S, Guo L 2018 Small 14 1703274Google Scholar

    [38]

    Lin J, Shang Y, Li X, Yu J, Wang X, Guo L 2017 Adv. Mater. 29 10Google Scholar

    [39]

    Qiu C, Zhang L, Wang H, Jiang C 2012 J. Phys. Chem. Lett. 3 651Google Scholar

    [40]

    Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S 2013 Nanoscale 5 2784Google Scholar

    [41]

    Zhang Q, Li X, Yi W, Li W, Bai H, Liu J, Xi G 2017 Anal. Chem. 89 11765Google Scholar

    [42]

    Wu H, Zhou X, Li J, Li X, Li B, Fei W, Zhou J, Yin J, Guo W 2018 Small 14 1802276Google Scholar

    [43]

    Cao Y, Liang P, Dong Q, Wang D, Zhang, Tang L, Wang L, Jin S, Ni D, Yu Z 2019 Anal. Chem. 91 8683Google Scholar

    [44]

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar

    [45]

    Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, Zhao Z 2015 Nat. Commun. 6 7800Google Scholar

    [46]

    Fan X, Li M, Hao Q, Zhu M, Hou X, Huang H, Ma L, Schmidt O G, Qiu T 2019 Adv. Mater. Interfaces 6 1901133Google Scholar

    [47]

    Zhou C L, Sun L F, Zhang F Q, Gu C J, Zeng S W, Jiang T, Shen X, Ang D S, Zhou J 2019 ACS Appl. Mater. Interfaces 11 34091Google Scholar

    [48]

    Ye Y T, Bai H, Li M C, Tian Z, Du R F, Fan W H, Xi G C 2019 Adv. Mater. Technol. 4 1900282Google Scholar

    [49]

    Hou X Y, Luo X G, Fan X C, Peng Z H, Qiu T 2019 Phys. Chem. Chem. Phys. 21 2611Google Scholar

    [50]

    Wang X, Shi W, She G, Mu L 2011 J. Am. Chem. Soc. 133 16518Google Scholar

    [51]

    侯近龙, 贾祥非, 薛向欣, 陈雷, 宋微, 徐蔚青, 赵冰 2012 高等学校化学学报 33 139Google Scholar

    Hou J L, Jia X F, Xue X X, Chen L, Song W, Xu W Q, Zhao B 2012 Chem. J. Chin. Univ. 33 139Google Scholar

    [52]

    Miao P, Wu J, Du Y, Sun Y, Xu P 2018 J. Mater. Chem. C 6 10855Google Scholar

    [53]

    Miao P, Qin J K, Shen Y, Su H, Dai J, Song B, Du Y, Sun M, Zhang W, Wang H L, Xu C Y, Xu P 2018 Small 14 1704079Google Scholar

    [54]

    Gao M, Miao P, Han X, Sun C, Ma Y, Gao Y, Xu P 2019 Inorg. Chem. Front. 6 2318Google Scholar

    [55]

    Lee N, Schuck P J, Nico P S, Gilbert B 2015 J. Phys. Chem. Lett. 6 970Google Scholar

    [56]

    Fu X, Pan Y, Wang X, Lombardi J R 2011 J. Chem. Phys. 134 024707Google Scholar

    [57]

    Quagliano L G 2004 J. Am. Chem. Soc. 126 7393Google Scholar

    [58]

    Livingstone R, Zhou X, Tamargo M C, Lombardi J R, Quagliano L C, Jean M F 2010 J. Phys. Chem. C 114 17460Google Scholar

  • 图 1  (a) 不同pH下, 4-MBA分子在TiO2基底上的SERS光谱[21]; (b) 4-MBA分子在不同Zn掺杂程度TiO2基底上的SERS光谱[22]; (c) 4-MBA分子在不同体系中的能级图[24]; (d) TiO2球形谐振器(T-rex)的制备流程和T-rex 100样品的SEM图像[26]

    Figure 1.  (a) SERS spectra of 4-MBA adsorbed on TiO2 nanoparticles under the different pH values[21]; (b) SERS spectra of 4-MBA adsorbed on TiO2 and Zn-doped TiO2[22]; (c) schematic diagram of the HOMO and LUMO of 4-MBA, 4-MBA@a-TiO2, and 4-MBA@c-TiO2[24]; (d) scheme of preparation of TiO2 spherical resonators (Trex). SEM image of T-rex100 sample[26].

    图 2  (a) a-ZnO NCs和c-ZnO NCs的制备过程; (b) a-和c-ZnO NCs的TEM图像和高分辨透射电镜(High-resolution TEM, HRTEM)显微照片; (c)—(e) 单个a-和c-ZnO NCs上的4-MBA, 4-MPY, 4-ATP分子(10-4 M)的SERS光谱, 实测的(M)和模拟的(S)[32]

    Figure 2.  (a) A schematic of the fabrication of a- and c-ZnO NCs; (b) SEM and TEM images of a- and c-ZnO NCs.; (c)-(e) SERS spectra of 4-MBA, 4-MPY, and 4-ATP (10-4 M) molecules adsorbed onto a single a- and c-ZnO NC, Measured (M) and simulated (S)[32]

    图 3  (a) 4-NBT分子分别在{100}单立方、{110}十二面体和{111}八面体Cu2O粒子上的SERS谱[36]; (b) 分别为立方Cu2O、八面体Cu2O、十二面体Cu2O结构的SEM图[36]; (c) Cu2O立方型超结构的自组装过程[37]

    Figure 3.  (a) SERS spectra of 4-NBT molecule obtained on single {100}-cubic, {110}-dodecahedral, and {111}-octahedral Cu2O particle, respectively [36]; (b) the SEM images of the cubic Cu2O, octahedral Cu2O, and dodecahedral Cu2O structures[36]; (c) self-assembly process for the formation of Cu2O cube-like superstructures[37].

    图 4  (a) TIS方法制备Cu2O CSs的流程; (b), (c) Cu2O CSs的SEM图和TEM图[40]

    Figure 4.  (a) Scheme illustration of the TIS process for the formation of Cu2O CSs; (b), (c) SEM and TEM images of Cu2O CSs[40].

    图 5  (a) 哑铃状MoO2纳米晶的TEM图[12]; (b) 2D MoS2上4-MPy的范德华相互作用的模型示意图[7]; (c) MoO2, MoO2-x纳米粒子的XRD图谱和单斜MoO2晶体结构示意图[43]

    Figure 5.  (a) TEM images of the MoO2 powders[12]; (b) schematic model of the van der Waals interaction of 4-MPy on top of the 2D MoS2[7]; (c) XRD patterns of MoO2 and MoO2-x nanoparticles; Schematic illustrating the crystal structure of monoclinic MoO2[43].

    图 6  (a) WO3和W18O49的结构示意图[45]; (b) WO3-x SERS基底3D结构示意图[47]; (c) 4种不同增强模式实验设置示意图[49]

    Figure 6.  (a) Structure illustration for WO3 and W18O49 [45]; (b) 3D schematic structure of the WO3-x SERS substrate[47]; (c) schematic illustration of the experiment settings for four different enhancement mode[49].

    图 7  (a) ReS2纳米片SERS效应示意图[53]; (b)空心M(OH)x (M = Fe, Co, Ni)八面体的制备流程[54]

    Figure 7.  (a) Schematic illustration of the experimental setup for understanding the Raman enhancement mechanism on ReS2 nanosheets [53]; (b) schematic illustration of preparation of hollow M(OH)x (M = Fe, Co, Ni) octahedra[54].

  • [1]

    Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163Google Scholar

    [2]

    Moskovits M 1978 J. Chem. Phys. 69 4159Google Scholar

    [3]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [4]

    Ji W, Zhao B, Ozaki Y 2016 J. Raman Spectrosc. 47 51Google Scholar

    [5]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [6]

    Xue X, Ji W, Mao Z, Mao H, Wang Y, Wang X, Ruan W, Zhao B, Lombardi J R 2012 J. Phys. Chem. C 116 8792Google Scholar

    [7]

    Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photonics 3 1164Google Scholar

    [8]

    Tan Y, Gu J, Xu W, Chen Z, Liu D, Liu Q, Zhang D 2013 ACS Appl. Mater. Interfaces 5 9878Google Scholar

    [9]

    Daglar B, Khudiyev T, Demirel G B, Buyukserin F, Bayindir M 2013 J. Mater. Chem. C 1 7842Google Scholar

    [10]

    赵冰, 徐蔚青, 阮伟东, 韩晓霞 2008 高等学校化学学报 29 2591Google Scholar

    Zhao B, Xu W Q, Ruan W D, Han X X 2008 Chem. J. Chin. Univ. 29 2591Google Scholar

    [11]

    Wang X, Guo L 2020 Angew. Chem. Int. Ed. 59 4231Google Scholar

    [12]

    Zhang Q, Li X, Ma Q, Zhang Q, Bai H, Yi W, Liu J, Han J, Xi G 2017 Nat. Commun. 8 14903Google Scholar

    [13]

    Shi L, Tuzer T U, Fenollosa R, Meseguer F 2012 Adv. Mater. 24 5934Google Scholar

    [14]

    Ji W, Li L, Song W, Wang X, Zhao B, Ozaki Y 2019 Angew. Chem. Int. Ed. 58 14452Google Scholar

    [15]

    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2008 J. Phys. Chem. C 112 20095Google Scholar

    [16]

    Jung N, Crowthe A C, Kim N, Kim P, Brus L 2010 ACS Nano 4 7005Google Scholar

    [17]

    Feng S, Santos M C D, Carvalho B R, et al. 2016 Sci. Adv. 2 1600322Google Scholar

    [18]

    Huang S, Ling X, Liang L, Song Y, Fang W, Zhang J, Kong J, Meunier V, Dresselhaus M S 2015 Nano Lett. 15 2892Google Scholar

    [19]

    Begliarbekov M, Sul O, Santanello J, Ai N, Zhang X, Yang E H, Strauf S 2011 Nano Lett. 11 1254Google Scholar

    [20]

    Papadakis D, Diamantopoulou A, Pantazopoulos P A, et al. 2019 Nanoscale 11 21542Google Scholar

    [21]

    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi J R 2009 J. Raman Spectrosc. 40 2004Google Scholar

    [22]

    Yang L, Zhang Y, Ruan W, Zhao B, Xu W, Lombardi J R 2010 J. Raman Spectrosc. 41 721Google Scholar

    [23]

    Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K 2020 Nanoscale Horiz. 5 294Google Scholar

    [24]

    Wang X, Shi W, Wang S, Zhao H, Lin J, Yang Z, Chen M, Guo L 2019 J. Am. Chem. Soc. 141 5856Google Scholar

    [25]

    Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A 2020 ACS Appl. Mater. Interfaces 12 4204Google Scholar

    [26]

    Alessandri I 2013 J. Am. Chem. Soc. 135 5541Google Scholar

    [27]

    Qi D, Lu L, Wang L, Zhang J 2014 J. Am. Chem. Soc. 136 9886Google Scholar

    [28]

    Sarycheva A, Makaryan T, Maleski K, et al. 2017 J. Phys. Chem. C 121 19983Google Scholar

    [29]

    Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C 2020 Sci. China Mater. 63 794Google Scholar

    [30]

    Wen H, He T J, Xu C Y, Zuo J, Liu F C 1996 Mol. Phys. 88 281Google Scholar

    [31]

    Sun Z, Zhao B, Lombardi J R 2007 Appl. Phys. Lett. 91 221106Google Scholar

    [32]

    Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, Guo L 2017 Angew. Chem. Int. Ed. 56 9851Google Scholar

    [33]

    Zhao X, Deng M, Rao G, et al. 2018 Small 14 1802477Google Scholar

    [34]

    Li X, Shang Y, Lin J, Li A, Wang X, Li B, Guo L 2018 Adv. Funct. Mater. 28 1801868Google Scholar

    [35]

    Li X, Ren X, Zhang Y, Choy W C, Wei B 2015 Nanoscale 7 11291Google Scholar

    [36]

    Wang R C, Li C H 2011 Acta Mater. 59 822Google Scholar

    [37]

    Lin J, Hao W, Shang Y, Wang X, Qiu D, Ma G, Chen C, Li S, Guo L 2018 Small 14 1703274Google Scholar

    [38]

    Lin J, Shang Y, Li X, Yu J, Wang X, Guo L 2017 Adv. Mater. 29 10Google Scholar

    [39]

    Qiu C, Zhang L, Wang H, Jiang C 2012 J. Phys. Chem. Lett. 3 651Google Scholar

    [40]

    Jiang L, You T, Yin P, Shang Y, Zhang D, Guo L, Yang S 2013 Nanoscale 5 2784Google Scholar

    [41]

    Zhang Q, Li X, Yi W, Li W, Bai H, Liu J, Xi G 2017 Anal. Chem. 89 11765Google Scholar

    [42]

    Wu H, Zhou X, Li J, Li X, Li B, Fei W, Zhou J, Yin J, Guo W 2018 Small 14 1802276Google Scholar

    [43]

    Cao Y, Liang P, Dong Q, Wang D, Zhang, Tang L, Wang L, Jin S, Ni D, Yu Z 2019 Anal. Chem. 91 8683Google Scholar

    [44]

    Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar

    [45]

    Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, Zhao Z 2015 Nat. Commun. 6 7800Google Scholar

    [46]

    Fan X, Li M, Hao Q, Zhu M, Hou X, Huang H, Ma L, Schmidt O G, Qiu T 2019 Adv. Mater. Interfaces 6 1901133Google Scholar

    [47]

    Zhou C L, Sun L F, Zhang F Q, Gu C J, Zeng S W, Jiang T, Shen X, Ang D S, Zhou J 2019 ACS Appl. Mater. Interfaces 11 34091Google Scholar

    [48]

    Ye Y T, Bai H, Li M C, Tian Z, Du R F, Fan W H, Xi G C 2019 Adv. Mater. Technol. 4 1900282Google Scholar

    [49]

    Hou X Y, Luo X G, Fan X C, Peng Z H, Qiu T 2019 Phys. Chem. Chem. Phys. 21 2611Google Scholar

    [50]

    Wang X, Shi W, She G, Mu L 2011 J. Am. Chem. Soc. 133 16518Google Scholar

    [51]

    侯近龙, 贾祥非, 薛向欣, 陈雷, 宋微, 徐蔚青, 赵冰 2012 高等学校化学学报 33 139Google Scholar

    Hou J L, Jia X F, Xue X X, Chen L, Song W, Xu W Q, Zhao B 2012 Chem. J. Chin. Univ. 33 139Google Scholar

    [52]

    Miao P, Wu J, Du Y, Sun Y, Xu P 2018 J. Mater. Chem. C 6 10855Google Scholar

    [53]

    Miao P, Qin J K, Shen Y, Su H, Dai J, Song B, Du Y, Sun M, Zhang W, Wang H L, Xu C Y, Xu P 2018 Small 14 1704079Google Scholar

    [54]

    Gao M, Miao P, Han X, Sun C, Ma Y, Gao Y, Xu P 2019 Inorg. Chem. Front. 6 2318Google Scholar

    [55]

    Lee N, Schuck P J, Nico P S, Gilbert B 2015 J. Phys. Chem. Lett. 6 970Google Scholar

    [56]

    Fu X, Pan Y, Wang X, Lombardi J R 2011 J. Chem. Phys. 134 024707Google Scholar

    [57]

    Quagliano L G 2004 J. Am. Chem. Soc. 126 7393Google Scholar

    [58]

    Livingstone R, Zhou X, Tamargo M C, Lombardi J R, Quagliano L C, Jean M F 2010 J. Phys. Chem. C 114 17460Google Scholar

  • [1] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] Wang Xin, Kang Zhe-Ming, Liu Long, Fan Xian-Guang. Baseline correction algorithm for Raman spectra based on median filtering and un-uniform B-spline. Acta Physica Sinica, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [5] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [6] Zhang Li, Zheng Hai-Yang, Wang Ying-Ping, Ding Lei, Fang Li. Characteristics of Raman spectrum from stand-off detection. Acta Physica Sinica, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [7] Liang Yuan, Xing Huai-Zhong, Chao Ming-Ju, Liang Er-Jun. Syntheses of negative thermal expansion materials Sc2(MO4)3 (M=W, Mo) with a CO2 laser and their Raman spectra. Acta Physica Sinica, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [8] Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations. Acta Physica Sinica, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [9] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [10] Zang Hang, Wang Zhi-Guang, Pang Li-Long, Wei Kong-Fang, Yao Cun-Feng, Shen Tie-Long, Sun Jian-Rong, Ma Yi-Zhun, Gou Jie, Sheng Yan-Bin, Zhu Ya-Bin. Raman investigation of ion-implanted ZnO films. Acta Physica Sinica, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [11] Chen Xiang-Lei, Zhang Jie, Du Huai-Jiang, Zhou Xian-Yi, Ye Bang-Jiao. Calculation of positron lifetime of compound semiconductors. Acta Physica Sinica, 2010, 59(1): 603-608. doi: 10.7498/aps.59.603
    [12] Duan Bao-Xing, Yang Yin-Tang. Calculation of Raman shifts of Si(1-x)Gex and amorphous silicon using Keating model. Acta Physica Sinica, 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [13] Zhou Wen-Ping, Wan Song-Ming, Zhang Xia, Zhang Qing-Li, Sun Dun-Lu, Qiu Huai-Li, You Jing-Lin, Yin Shao-Tang. Study of growth units and the growth habit of PbMoO4 crystal using high temperature Raman spectra. Acta Physica Sinica, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [14] Zhao Wen-Bin, Zhang Guan-Jun, Yan Zhang. Investigation on surface damage phenomena induced by flashover across semiconductor. Acta Physica Sinica, 2008, 57(8): 5130-5137. doi: 10.7498/aps.57.5130
    [15] Qin Xiu-Juan, Shao Guang-Jie, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu, Meng Hui-Min. Preparation and Raman spectra of high quality ZnO nano-bulk materials. Acta Physica Sinica, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [16] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [18] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [19] Sun Dun-Lu, Qiu Huai-Li, Hang Yin, Zhang Lian-Han, Zhu Shi-Ning, Wang Ai-Hua, Yin Shao-Tang. Study on laser-micro-Raman spectra in near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
Metrics
  • Abstract views:  10202
  • PDF Downloads:  469
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2020
  • Accepted Date:  23 June 2020
  • Available Online:  10 October 2020
  • Published Online:  05 October 2020

/

返回文章
返回