Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna

Guo Ze-Xu Cao Xiang-Yu Gao Jun Li Si-Jia Yang Huan-Huan Hao Biao

Citation:

Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna

Guo Ze-Xu, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Yang Huan-Huan, Hao Biao
PDF
HTML
Get Citation
  • The transmission polarization conversion metasurface has been widely concerned, because it has the advantage of being easy to be conformal with the antenna. Based on the reasonable arrangement of transmission polarization conversion units, various and complex electromagnetic functions can be realized. As the electromagnetic open window on the flight platform, the antenna is the bottleneck that restricts the decrease of radar cross section (RCS) of the whole flight platform. It is difficult to simultaneously realize the normal and efficient radiation of the antenna and the decrease of the RCS of the antenna. When the designed transmission metasurface is used in the antenna design, the radiation and scattering of the antenna can be regulated comprehensively. In this paper, a composite polarization conversion metasurface is proposed and verified. The unit cell of composite polarization conversion metasurface consists of two mirror symmetrical anisotropic metal patches in the upper layer, a dielectric layer and a polarization gate in the lower layer. When the polarization direction of the incident electromagnetic wave is perpendicular to the extension direction of the polarization gate and arrives at the composite polarization conversion surface, the conversion surface can realize the conversion from transmission linear polarization to right-hand circular polarization in a frequency range from 9.3 GHz to 10.9 GHz. When the polarization direction of the incident electromagnetic wave is parallel to the extension direction of the polarization gate, co-polarized total reflection can be realized. The chessboard arrangement metasurface is composed of composite polarization conversion unit and its mirror unit. A novel linearly polarized chessboard arrangement metasurface antenna is composed of the linearly polarized source microstrip antenna with a bandwidth of 9.4–10.7 GHz and the chessboard arrangement metasurface. By using the counter rotating cancellation characteristic of circular polarization, the chessboard arrangement metasurface antenna maintains linearly polarized radiation. Comparing with the source microstrip antenna, the linear polarization purity of chessboard arrangement metasurface antenna is improved from 9.5 GHz to 10.5 GHz. At the same time, the forward gain of the chessboard arrangement antenna increases and the radar cross section decreases. The maximum reduction is 39.2 dB. To further verify the practicability of the design and analysis, the chessboard arrangement metasurface antenna sample is fabricated and measured in microwave anechoic chamber with an Agilent 5230C network analyzer. The experimental results are in good agreement with the simulation results. This study has important reference value in the design of high gain, low RCS antenna and integrated regulation radiation and scattering of antenna.
      Corresponding author: Cao Xiang-Yu, 418604809@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471389, 61671464, 61701523, 61801508) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2018JM6040, 2019JQ-103, 2020JM-350)
    [1]

    Challita F, Laly P, Yusuf M, Tanghe E, Joseph W, Lienard M, Gaillot D P, Degauque P 2020 IEEE Antennas Wirel. Propag. Lett. 19 297Google Scholar

    [2]

    Gaillot D P, Tanghe E, Joseph W, Laly P, Tran V C, Lienard M, Martens L 2015 IEEE Trans. Antennas Propag. 63 3219Google Scholar

    [3]

    Dimitrov K C, Lee Y, Min B W, Park J, Jeong J, Kim H J 2020 IEEE Antennas Wirel. Propag. Lett. 19 317Google Scholar

    [4]

    Hasani H, Silva J S, Capdevila S, Garcia-Vigueras M, Mosig, J R 2019 IEEE Trans. Antennas Propag. 67 5325Google Scholar

    [5]

    韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201Google Scholar

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201Google Scholar

    [6]

    Lin D M, Fan P Y, Hasman E, Brongersma M L 2014 Science 345 28Google Scholar

    [7]

    Tao Z, Wan X, Pan B C, Cui T J 2017 Appl. Phys. Lett. 110 121901Google Scholar

    [8]

    Binion J D, Lier E, Werner D H, Hand T H, Jiang Z H, Werner P L 2020 IEEE Trans. Antennas Propag. 68 1302Google Scholar

    [9]

    Lei M, Feng N Y, Wang Q M, Hao Y N, Huang S G, Bi K 2016 J. Appl. Phys. 119 244504Google Scholar

    [10]

    Luo H, Cheng Y Z 2019 Opt. Mater. 96 109279Google Scholar

    [11]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Wang M, Gao X X, Cui T J 2019 Phys. Rev. Appl. 12 024012Google Scholar

    [12]

    Zheng Q Q, Li Y F, Pang Y Q, Chen H Y, Sui S, Yang J F, Ma H, Qu S B, Zhang J Q 2017 IEEE Trans. Antennas Propag. 65 4470Google Scholar

    [13]

    Yang B W, Liu T, Guo H J, Xiao S Y, Zhou L 2019 Sci. Bull. 64 823Google Scholar

    [14]

    Li S J, Li Y B, Li H, Wang Z X, Zhang C, Guo Z X, Li R Q, Cao X Y, Cheng Qiang, Cui T J 2020 Ann. Phys.(Berlin) 6 2000020Google Scholar

    [15]

    Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503Google Scholar

    [16]

    Li S J, Cui T J, Li Y B, Zhang C, Li R Q, Cao X Y, Guo Z X 2019 Adv. Theory Simul. 2 1900105Google Scholar

    [17]

    Yu Y Z, Xiao F J, He C, Jin R H, Zhu W R 2020 Opt. Express 28 11797Google Scholar

    [18]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [19]

    Yu H C, Cao X Y, Gao J, Yang H H, Jidi L R, Han J F, Tong L I 2018 Opt. Mater. Express 8 3373Google Scholar

    [20]

    Lin B Q, Guo J X, Ma Y H, Wu W S, Duan X Y, Wang Z, Li Y 2018 Appl. Phys. A 124 715Google Scholar

    [21]

    Guo Z X, Cao X Y, Gao J, Yang H H, Jidi L R 2020 J. Appl. Phys. 127 115103Google Scholar

    [22]

    Ni C, Chen M S, Zhang Z X, Wu X L 2018 IEEE Trans. Antennas Propag. 17 78Google Scholar

    [23]

    兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭 2019 物理学报 68 034101Google Scholar

    Lan J X, Cao X Y, Gao J, Han J F, Liu T, Cong L L, Wang S M 2019 Acta Phys. Sin. 68 034101Google Scholar

    [24]

    Modi A Y, Alyahya M A, Balanis C A, Birtcher C R 2020 IEEE Trans. Antennas Propag. 68 1436Google Scholar

  • 图 1  复合型极化转换表面单元结构示意图

    Figure 1.  Schematic of the unit of composite polarization conversion metasurface.

    图 2  复合型极化转换单元透射系数、反射系数、相位和轴比曲线 (a) 透射系数、反射系数和轴比; (b) 相位和相位差

    Figure 2.  The transmission coefficient, reflection coefficient, phase and AR of the unit of composite polarization conversion metasurface: (a) Transmission coefficient, reflection coefficient and AR; (b) phase and phase difference.

    图 3  极化转换原理图

    Figure 3.  The schematic of polarization conversion.

    图 4  10 Hz频点处, 复合型极化转换单元感应电流强度和电场强度分布图 (a) x极化入射波; (b) y极化入射波

    Figure 4.  The induced current and electric field intensity distribution of composite polarization conversion metasurface: (a) x-polarized incident wave; (b) y-polarized incident wave.

    图 5  源微带天线和基于12 × 12单元排布表面的圆极化高增益天线 (a)线极化微带天线; (b)圆极化高增益天线

    Figure 5.  The source microstrip antenna and circularly polarized high gain antenna based on 12 × 12 units arrangement matasurface (a) The linearly polarized microstrip antenna; (b) the circularly polarized high gain antenna.

    图 6  12 × 12排布表面-天线与源天线对比图 (a) 反射系数随频率变化曲线; (b) 轴比随频率变化曲线;

    Figure 6.  Comparison between the 12 × 12 units arrangement metasurface-antenna and source antenna: (a) Reflection coefficient varies with frequency; (b) AR varies with frequency.

    图 7  线-圆极化转换现象示意图 (a) 线-左旋圆极化转换; (b) 线-右旋圆极化转换

    Figure 7.  Schematic of the linear to circular polarization conversion phenomenon: (a) Linear to left-hand circular polarization conversion; (b) linear to right-hand circular polarization conversion.

    图 8  基于棋盘排布表面的线极化低RCS高增益天线

    Figure 8.  Linearly polarized low RCS high gain antenna based on chessboard arrangement metasurface

    图 9  棋盘排布表面-天线与源天线对比图 (a) 反射系数随频率变化; (b) 轴比随频率变化; (c) 实际增益随θ变化; (d) 实际增益随频率变化

    Figure 9.  Comparison between the chessboard arrangement metasurface-antenna and source antenna: (a) Reflection coefficient varies with frequency; (b) AR varies with frequency; (c) realized gain varies with θ; (d) realized gain varies with frequency.

    图 10  天线散射图 (a) 源天线; (b) 棋盘排布表面-天线

    Figure 10.  Scattering pattern of antenna: (a) Source antenna; (b) chessboard arrangement metasurface-antenna.

    图 11  天线低RCS特性分析曲线 (a) 源天线和棋盘排布表面-天线单站RCS; (b) 单元及其镜像单元反射幅值曲线; (c) 单元及其镜像单元极化转换率曲线; (d) 单元及其镜像单元反射相位曲线

    Figure 11.  Analysis curve of low RCS characteristics of antenna: (a) Source antenna and chessboard arrangement metasurface-antenna single station RCS; (b) reflection amplitude curve of unit and its mirror unit; (c) polarization conversion curve of unit and its mirror unit; (d) reflection phase curve of unit and its mirror unit.

    图 12  (a) 加工样品示意图; (b) 实测环境示意图

    Figure 12.  (a) Schematic of fabricated sample; (b) measured environment.

    图 13  仿真结果与实验结果对比 (a) 源天线反射系数随频率变化; (b) 源天线实际增益随θ变化; (c) 棋盘排布表面-天线反射系数随频率变化; (d) 棋盘排布表面-天线实际增益随θ变化

    Figure 13.  Comparison between simulation results and measurement results: (a) Reflection coefficient varies with frequency of source antenna; (b) realized gain varies with θ of source antenna; (c) reflection coefficient varies with frequency of chessboard arrangement metasurface-antenna; (d) realized gain varies with θ of chessboard arrangement metasurface-antenna.

  • [1]

    Challita F, Laly P, Yusuf M, Tanghe E, Joseph W, Lienard M, Gaillot D P, Degauque P 2020 IEEE Antennas Wirel. Propag. Lett. 19 297Google Scholar

    [2]

    Gaillot D P, Tanghe E, Joseph W, Laly P, Tran V C, Lienard M, Martens L 2015 IEEE Trans. Antennas Propag. 63 3219Google Scholar

    [3]

    Dimitrov K C, Lee Y, Min B W, Park J, Jeong J, Kim H J 2020 IEEE Antennas Wirel. Propag. Lett. 19 317Google Scholar

    [4]

    Hasani H, Silva J S, Capdevila S, Garcia-Vigueras M, Mosig, J R 2019 IEEE Trans. Antennas Propag. 67 5325Google Scholar

    [5]

    韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201Google Scholar

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201Google Scholar

    [6]

    Lin D M, Fan P Y, Hasman E, Brongersma M L 2014 Science 345 28Google Scholar

    [7]

    Tao Z, Wan X, Pan B C, Cui T J 2017 Appl. Phys. Lett. 110 121901Google Scholar

    [8]

    Binion J D, Lier E, Werner D H, Hand T H, Jiang Z H, Werner P L 2020 IEEE Trans. Antennas Propag. 68 1302Google Scholar

    [9]

    Lei M, Feng N Y, Wang Q M, Hao Y N, Huang S G, Bi K 2016 J. Appl. Phys. 119 244504Google Scholar

    [10]

    Luo H, Cheng Y Z 2019 Opt. Mater. 96 109279Google Scholar

    [11]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Wang M, Gao X X, Cui T J 2019 Phys. Rev. Appl. 12 024012Google Scholar

    [12]

    Zheng Q Q, Li Y F, Pang Y Q, Chen H Y, Sui S, Yang J F, Ma H, Qu S B, Zhang J Q 2017 IEEE Trans. Antennas Propag. 65 4470Google Scholar

    [13]

    Yang B W, Liu T, Guo H J, Xiao S Y, Zhou L 2019 Sci. Bull. 64 823Google Scholar

    [14]

    Li S J, Li Y B, Li H, Wang Z X, Zhang C, Guo Z X, Li R Q, Cao X Y, Cheng Qiang, Cui T J 2020 Ann. Phys.(Berlin) 6 2000020Google Scholar

    [15]

    Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503Google Scholar

    [16]

    Li S J, Cui T J, Li Y B, Zhang C, Li R Q, Cao X Y, Guo Z X 2019 Adv. Theory Simul. 2 1900105Google Scholar

    [17]

    Yu Y Z, Xiao F J, He C, Jin R H, Zhu W R 2020 Opt. Express 28 11797Google Scholar

    [18]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [19]

    Yu H C, Cao X Y, Gao J, Yang H H, Jidi L R, Han J F, Tong L I 2018 Opt. Mater. Express 8 3373Google Scholar

    [20]

    Lin B Q, Guo J X, Ma Y H, Wu W S, Duan X Y, Wang Z, Li Y 2018 Appl. Phys. A 124 715Google Scholar

    [21]

    Guo Z X, Cao X Y, Gao J, Yang H H, Jidi L R 2020 J. Appl. Phys. 127 115103Google Scholar

    [22]

    Ni C, Chen M S, Zhang Z X, Wu X L 2018 IEEE Trans. Antennas Propag. 17 78Google Scholar

    [23]

    兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭 2019 物理学报 68 034101Google Scholar

    Lan J X, Cao X Y, Gao J, Han J F, Liu T, Cong L L, Wang S M 2019 Acta Phys. Sin. 68 034101Google Scholar

    [24]

    Modi A Y, Alyahya M A, Balanis C A, Birtcher C R 2020 IEEE Trans. Antennas Propag. 68 1436Google Scholar

  • [1] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [3] Huang Shuai, Wu Tian-Hao, Guan Chun-Sheng, Ding Xu-Min, Wu Yu-Ming, Wu Qun, Tang Xiao-Bin. Cavity-excited Huygens’ metasurface for wavefront manipulation. Acta Physica Sinica, 2022, 71(22): 224101. doi: 10.7498/aps.71.20221284
    [4] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [6] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [9] Liu Jun-Qun. A class of approximate computation method for antenna directivity. Acta Physica Sinica, 2020, 69(2): 028401. doi: 10.7498/aps.69.20191268
    [10] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] Ping Lan-Lan, Zhang Xin-Jun, Yang Hua, Xu Guo-Sheng, Chang Lei, Wu Dong-Sheng, Lü Hong, Zheng Chang-Yong, Peng Jin-Hua, Jin Hai-Hong, He Chao, Gan Gui-Hua. Optimal design of helicon wave antenna and numerical investigation into power deposition on helicon physics prototype experiment. Acta Physica Sinica, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [12] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [13] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [14] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [15] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [16] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [17] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [18] Yang Yong, Sun Wei-Qiang, Zhuang Qian-Wei, Feng Tao, Xu Sheng-Yong, Xie Si-Shen. High frequence structure simulator simulation and performance analysis for nearfield and wide band electric coupling antenna. Acta Physica Sinica, 2012, 61(20): 208401. doi: 10.7498/aps.61.208401
    [19] Zheng Kui-Song, Wu Chang-Ying, Wan Guo-Bin, Wei Gao. Implementation of two-element antenna array with right/left-handed transmission line metamaterials. Acta Physica Sinica, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [20] Wang Yue, Wu Qun, Shi Wei, He Xun-Jun, Yin Jing-Hua. Terahertz antenna based on the carbon nano-tube in the nano-scopic domain. Acta Physica Sinica, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
Metrics
  • Abstract views:  6333
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2020
  • Accepted Date:  13 August 2020
  • Available Online:  27 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回