Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction

Chen Xiao-Hui Tan Bo-Zhong Xue Tao Ma Yun-Can Jin Sai Li Zhi-Jun Xin Yue-Feng Li Xiao-Ya Li Jun

Citation:

In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction

Chen Xiao-Hui, Tan Bo-Zhong, Xue Tao, Ma Yun-Can, Jin Sai, Li Zhi-Jun, Xin Yue-Feng, Li Xiao-Ya, Li Jun
PDF
HTML
Get Citation
  • The knowledge of phase transition of material under dynamic loading is an important area of research in inertial confinement fusion and material science. Though the shock-induced phase transitions of various materials over a broad pressure range have become a field of study for decades, the loading strain rates in most of these experiments is not more than $ {10^{6}}\;{{\rm{s}}^{ - 1}} $. However, in contrast with the strain rate range where the phase diagram is a good predictor of the crystal structure of a material, at higher strain rate ($ > {10^{6}}\;{{\rm{s}}^{ - 1}} $) the phase diagram measured can be quite different not only in shifting the boundary line between various phases, but also in giving a different sequence of crystal structure. High-power laser facility can drive shock wave and simultaneously provide a precisely synchronized ultra-short and ultra-intense X-ray source. Here, based on the Prototype laser facility, an in situ X-ray diffraction platform for diagnosing shock-induced phase transition of polycrystalline material is established. The in situ observation of material phase transition under high-strain-rate shock loading is carried out with typical metals of vanadium and iron. Diffraction results are consistent with vanadium remaining in the body-centered-cubic structure up to 69 GPa, while iron transforms from the body-centered-cubic structure into hexagonal-close-packed structure at 159 GPa. The compressive properties of vanadium and iron obtained in in situ X-ray diffraction experiment are in good agreement with their macroscopic Hugonoit curves. The decrease in the lattice volume over the pressure step period yields a strain rate on the order of $ {10^{8}} - {10^{9}}\;{{\rm{s}}^{ - 1}} $. The available of the presented in situ X-ray diffraction plateform offers the potential to extend our understanding of the kinetics of phase transition in polycrystalline under high-pressure high-strain-rate shock compression.
      Corresponding author: Chen Xiao-Hui, chenxh1988@126.com ; Li Jun, lijun102@caep.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. JCKY2016212A501), the National Natural Science Foundation of China (Grant Nos. 11802290, 11704357), and the National Key Laboratory of Shock Wave and Detonation Physics (Grant Nos. JCKYS2018212004, JCKYS2018212002), China
    [1]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar

    [2]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar

    [3]

    Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108Google Scholar

    [4]

    Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927Google Scholar

    [5]

    Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1

    [6]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [7]

    Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709Google Scholar

    [8]

    Turneaure S J, Sinclair N, Gupta Y M 2016 Phys. Rev. Lett. 117 045502Google Scholar

    [9]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [10]

    Milathianaki D, Boutet S, Williams G J, Higginbotham A, Ratner D, Gleason A E, Messerschmidt M, Seibert M M, Swift D C, Hering P, Robinson J, White W E, Wark J S 2013 Science 342 220Google Scholar

    [11]

    Coleman A L, Gorman M G, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Fratanduono D E, Smith R F, Galtier E, Lee H J, Nagler B, Granados E, Collins G W, Eggert J H, Wark J S, McMahon M I 2019 Phys. Rev. Lett. 122 255704Google Scholar

    [12]

    Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar

    [13]

    Wang J, Coppari F, Smith R F, Eggert J H, Lazicki A E, Fratanduono D E, Rygg J R, Boehly T R, Collins G W, Duffy T S 2016 Phys. Rev. B 94 104102Google Scholar

    [14]

    Wicks J K, Smith R F, Fratanduono D E, Coppari F, Kraus R G, Newman M G, Rygg J R, Eggert J H, Duffy T S 2018 Sci. Adv. 4 eaao5864Google Scholar

    [15]

    Chen X, Xue T, Liu D, Yang Q, Luo B, Mu Li, Li X, Li J 2018 Rev. Sci. Instrum. 89 013904Google Scholar

    [16]

    McCoy C A, Marshall M C, Polsin D N, Fratanduono D E, Celliers P M, Meyerhofer D D, Boehly T R 2019 Phys. Rev. B 100 014106Google Scholar

    [17]

    Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, Braun D G, Swift D C, Eggert J H 2015 Phys. Rev. Lett. 115 075502Google Scholar

    [18]

    李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar

    Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar

    [19]

    Swift D C, Tierney T E, Kopp R A, Gammel J T 2004 Phys. Rev. E 69 036406Google Scholar

    [20]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101Google Scholar

    [21]

    Gathers G R 1986 J. Appl. Phys. 59 3291Google Scholar

    [22]

    Browna J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496Google Scholar

    [23]

    Schollmeier M, Ao T, Field E S, Galloway B R, Kalita P, Kimmel M W, Morgan D V, Rambo P K, Schwarz J, Shores J E, Smith I C, Speas C S, Benage J F, Porter J L 2018 Rev. Sci. Instrum. 89 10F102

    [24]

    Vignes R M, Ahmed M F, Eggert J H, Fisher A C, Kalantar D H, Masters N D, Smith C A, Smith R F 2016 J. Phys. Conf. Ser. 717 012115Google Scholar

    [25]

    Moriarty J A 1992 Phys. Rev. B 45 2004Google Scholar

    [26]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar

    [27]

    Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter 20 275218Google Scholar

    [28]

    俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar

    [29]

    Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K, Gumbrell E T, Luis J J, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar

    [30]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359Google Scholar

    [31]

    Denoeud A, Ozaki N, Benuzzi-Mounaix A, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 7745

  • 图 1  基于原型装置的材料冲击相变原位X射线衍射探测系统图以及样品区局部放大图

    Figure 1.  Experimental setup for in situ X-ray diffraction of shock-compressed polycrystalline. A schematic of the target is shown below.

    图 2  (a)冲击压力为 (69.36 ± 9.31) GPa时多晶钒原位X射线衍射图像; (b)平面晶体谱仪测量的高功率激光驱动钒箔产生的X射线源能谱, 能谱中主要是${\rm{H}}{{\rm{e}}_\alpha }$线

    Figure 2.  (a) In situ X-ray diffraction image recoded for vanadium under pressure of (69.36 ± 9.31) GPa; (b) the X-ray spectrum emitted by the resulting vanadium foil is measured with crystal spectrometer and shows the dominant ${\rm{H}}{{\rm{e}}_\alpha }$ line.

    图 3  (a)通过坐标变换将钒原位X射线衍射图像转换到$2\theta \text{-} \phi$空间; (b)沿$\phi$方向积分并扣除本底后得到一维X射线衍射曲线; (c)激光干涉测速仪(DISAR)测量的钒样品自由面粒子速度演化历史, 据此可计算样品压力; (d)原位X射线衍射实验测量的压力与压缩比($\rho/\rho_{0}$)的关系, 实线代表轻气炮测量得到的钒Hugoniot曲线

    Figure 3.  (a) X-ray diffraction data for shock-compressed vanadium projected into $2\theta \text{-} \phi$ space; (b) the corresponding background-subtracted one-dimensional X-ray diffraction pattern; (c) the free surface velocity of vanadium recorded by the DISAR system; (d) pressure vs. compression ratio ($\rho/\rho_{0}$) for vanadium, where Hugoniot measurements from gas gun experiments are shown as solid line.

    图 4  (a)冲击压力为 (159.30 ± 6.11) GPa时多晶铁原位X射线衍射图像; (b)平面晶体谱仪测量的高功率激光驱动铁箔产生的X射线源能谱, 能谱中主要是${\rm{H}}{{\rm{e}}_\alpha }$线

    Figure 4.  (a) In situ X-ray diffraction image recoded for iron under pressure of (159.30 ± 6.11) GPa; (b) the X-ray spectrum emitted by the resulting iron foil is measured with crystal spectrometer and shows the dominant ${\rm{H}}{{\rm{e}}_\alpha }$ line.

    图 5  (a)通过坐标变换将铁原位X射线衍射图像转换到$2\theta\text{-}\phi$空间; (b)沿$\phi$方向积分并扣除本底后得到一维X射线衍射曲线; (c)激光干涉测速仪(DISAR)测量的铁样品自由面粒子速度演化历史, 据此可计算样品压力; (d)原位X射线衍射实验测量的压力与压缩比($\rho/\rho_{0}$)的关系, 实线代表轻气炮测量得到的铁Hugoniot曲线

    Figure 5.  (a) X-ray diffraction data for shock-compressed iron projected into $2\theta\text{-}\phi$ space; (b) the corresponding background-subtracted one-dimensional X-ray diffraction pattern; (c) the free surface velocity of iron recorded by the DISAR system; (d) pressure vs. compression ratio ($\rho/\rho_{0}$) for iron, where Hugoniot measurements from gas gun experiments are shown as solid line.

    表 1  金属钒[21]和铁[22]材料性质常数

    Table 1.  Parameters for vanadium and iron.

    Material$\rho_{0}/{\rm g}\!\cdot\! {\rm {cm} }^{-3}$$C_{0}/{\rm {km} }\!\cdot\! {\rm s}^{-1}$$\lambda$
    V6.1055.0441.242
    Fe7.8503.9351.578
    DownLoad: CSV
  • [1]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar

    [2]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar

    [3]

    Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108Google Scholar

    [4]

    Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927Google Scholar

    [5]

    Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1

    [6]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [7]

    Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709Google Scholar

    [8]

    Turneaure S J, Sinclair N, Gupta Y M 2016 Phys. Rev. Lett. 117 045502Google Scholar

    [9]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [10]

    Milathianaki D, Boutet S, Williams G J, Higginbotham A, Ratner D, Gleason A E, Messerschmidt M, Seibert M M, Swift D C, Hering P, Robinson J, White W E, Wark J S 2013 Science 342 220Google Scholar

    [11]

    Coleman A L, Gorman M G, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Fratanduono D E, Smith R F, Galtier E, Lee H J, Nagler B, Granados E, Collins G W, Eggert J H, Wark J S, McMahon M I 2019 Phys. Rev. Lett. 122 255704Google Scholar

    [12]

    Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar

    [13]

    Wang J, Coppari F, Smith R F, Eggert J H, Lazicki A E, Fratanduono D E, Rygg J R, Boehly T R, Collins G W, Duffy T S 2016 Phys. Rev. B 94 104102Google Scholar

    [14]

    Wicks J K, Smith R F, Fratanduono D E, Coppari F, Kraus R G, Newman M G, Rygg J R, Eggert J H, Duffy T S 2018 Sci. Adv. 4 eaao5864Google Scholar

    [15]

    Chen X, Xue T, Liu D, Yang Q, Luo B, Mu Li, Li X, Li J 2018 Rev. Sci. Instrum. 89 013904Google Scholar

    [16]

    McCoy C A, Marshall M C, Polsin D N, Fratanduono D E, Celliers P M, Meyerhofer D D, Boehly T R 2019 Phys. Rev. B 100 014106Google Scholar

    [17]

    Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, Braun D G, Swift D C, Eggert J H 2015 Phys. Rev. Lett. 115 075502Google Scholar

    [18]

    李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar

    Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar

    [19]

    Swift D C, Tierney T E, Kopp R A, Gammel J T 2004 Phys. Rev. E 69 036406Google Scholar

    [20]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101Google Scholar

    [21]

    Gathers G R 1986 J. Appl. Phys. 59 3291Google Scholar

    [22]

    Browna J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496Google Scholar

    [23]

    Schollmeier M, Ao T, Field E S, Galloway B R, Kalita P, Kimmel M W, Morgan D V, Rambo P K, Schwarz J, Shores J E, Smith I C, Speas C S, Benage J F, Porter J L 2018 Rev. Sci. Instrum. 89 10F102

    [24]

    Vignes R M, Ahmed M F, Eggert J H, Fisher A C, Kalantar D H, Masters N D, Smith C A, Smith R F 2016 J. Phys. Conf. Ser. 717 012115Google Scholar

    [25]

    Moriarty J A 1992 Phys. Rev. B 45 2004Google Scholar

    [26]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar

    [27]

    Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter 20 275218Google Scholar

    [28]

    俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar

    [29]

    Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K, Gumbrell E T, Luis J J, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar

    [30]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359Google Scholar

    [31]

    Denoeud A, Ozaki N, Benuzzi-Mounaix A, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 7745

  • [1] Xie Jing, Wang Li, Liu Chong, Zhang Yan-Li, Liu Qiang, Wang Tao, Chai Zhi-Hao, Xia Zhi-Qiang, Yang Lin, Zhang Pan-Zheng, Zhu Bao-Qiang. Improvement of fundamental frequency performance of SGII-UP laser facility. Acta Physica Sinica, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [2] Hua Ying-Xin, Chen Xiao-Hui, Li Jun, Hao Long, Sun Yi, Wang Yu-Feng, Geng Hua-Yun. In situ X-ray diffraction measurement of shock melting in vanadium. Acta Physica Sinica, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [3] Xie Pu-Chu, Wang Xiao-Song, Hu Chang-Ming, Hu Jian-Bo, Zhang Feng-Guo, Wang Yong-Gang. Incipient spallation of high purity copper under non-one-dimensional strain shock waves. Acta Physica Sinica, 2020, 69(3): 034601. doi: 10.7498/aps.69.20191104
    [4] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] Li Jun, Chen Xiao-Hui, Wu Qiang, Luo Bin-Qiang, Li Mu, Yang Qing-Guo, Tao Tian-Jiong, Jin Ke, Geng Hua-Yun, Tan Ye, Xue Tao. Experimental investigation on dynamic lattice response by in-situ Xray diffraction method. Acta Physica Sinica, 2017, 66(13): 136101. doi: 10.7498/aps.66.136101
    [6] Diwu Min-Jie, Hu Xiao-Mian. Plastic deformation in nanoporous aluminum subjected to high-rate uniaxial compression. Acta Physica Sinica, 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [7] Tan Ye, Yu Yu-Ying, Dai Cheng-Da, Yu Ji-Dong, Wang Qing-Song, Tan Hua. Release melting of bismuth. Acta Physica Sinica, 2013, 62(3): 036401. doi: 10.7498/aps.62.036401
    [8] Wang Ling, Wang He-Jin, Li Ting. In situ high temperature X-ray diffraction study of anatase and rutile. Acta Physica Sinica, 2013, 62(14): 146402. doi: 10.7498/aps.62.146402
    [9] Zhang Guo-Wen, Lu Xing-Qiang, Cao Hua-Bao, Yin Xian-Hua, Lü Feng-Nian, Zhang Zhen, Li Jing-Hui, Wang Ren-Gui, Ma Wei-Xin, Zhu Jian. Diffraction effect of high-power laser beams through contamination particles. Acta Physica Sinica, 2012, 61(2): 024201. doi: 10.7498/aps.61.024201
    [10] Tan Ye, Yu Yu-Ying, Dai Cheng-Da, Tan Hua, Wang Qing-Song, Wang Xiang. Measurement of low-pressure Hugoniot data for bismuth with reverse-impact geometry. Acta Physica Sinica, 2011, 60(10): 106401. doi: 10.7498/aps.60.106401
    [11] Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Jing Fu-Qian. Shock-induced phase transformation in nanocrystalline iron. Acta Physica Sinica, 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
    [12] Cai Zhao-Bin, Zhao Jian-Lin, Peng Tao, Li Dong. Hot-images induced by the random distribution defects in high power laser systems. Acta Physica Sinica, 2011, 60(11): 114209. doi: 10.7498/aps.60.114209
    [13] Liu Xun, Zhou Xian-Ming, Li Jun, Li Jia-Bo, Cao Xiu-Xia. Shock induced polymorphism phase transitions in high density glass. Acta Physica Sinica, 2010, 59(8): 5626-5634. doi: 10.7498/aps.59.5626
    [14] Chen Da-Nian, Fan Chun-Lei, Hu Jin-Wei, Tan Hua, Wang Huan-Ran, Wu Shan-Xing, Yu Yu-Ying. On constitutive models of oxygen-free high-conductivity copper at high pressure and high strain rates. Acta Physica Sinica, 2009, 58(4): 2612-2618. doi: 10.7498/aps.58.2612
    [15] Wang You-Wen, Deng Jian-Qin, Wen Shuang-Chun, Tang Zhi-Xiang, Fu Xi-Quan, Fan Dian-Yuan. Experimental study of the nonlinear hot image effect of broadband pulsed laser beams. Acta Physica Sinica, 2009, 58(3): 1738-1744. doi: 10.7498/aps.58.1738
    [16] Feng Ze-Hu, Fu Xi-Quan, Zhang Li-Fu, Xu Hui-Wen, Wen Shuang-Chun. Experimental research of small-scale self-focusing of ultrashort pulse with spatial modulation. Acta Physica Sinica, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [17] Wang You-Wen, Hu Yong-Hua, Wen Shuang-Chun, You Kai-Ming, Fu Xi-Quan. Study of nonlinear hot image effect of Gaussian optical beams. Acta Physica Sinica, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [18] Xie Liang-Ping, Zhao Jian-Lin, Su Jing-Qin, Jing Feng, Wang Wen-Yi, Peng Han-Sheng. Theoretical analysis of hot image effect from phase scatterer. Acta Physica Sinica, 2004, 53(7): 2175-2179. doi: 10.7498/aps.53.2175
    [19] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [20] TIAN LIANG-GUANG, ZHU NAN-CHANG, CHEN JING-YI, LI RUN-SHEN, XU SHUN-SHENG, ZHOU GUO-LIANG. X-RAY DOUBLE-CRYSTAL DIFFRACTION STUDY OF HIGH QUALITY GexSi1-x/Si STRAINED LAYER SUPERLATTICE. Acta Physica Sinica, 1991, 40(3): 441-448. doi: 10.7498/aps.40.441
Metrics
  • Abstract views:  6249
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2020
  • Accepted Date:  15 July 2020
  • Available Online:  27 November 2020
  • Published Online:  20 December 2020

/

返回文章
返回