Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NO2 sensing properties of porous Fe-doped indium oxide

Liu Zhi-Fu Li Pei Cheng Tie-Dong Huang Wen

Citation:

NO2 sensing properties of porous Fe-doped indium oxide

Liu Zhi-Fu, Li Pei, Cheng Tie-Dong, Huang Wen
PDF
HTML
Get Citation
  • It is of great significance to study the characteristics and working mechanism of NO2 sensor material for monitoring air pollution and protecting human health. As a metal oxide semiconductor material with simple preparation, low cost and good long-term stability, In2O3 has been widely studied in the detection of NO2. In order to explore the influence of Fe content on the gas sensing properties of porous In2O3 material, porous Fe-doped In2O3 nanoparticles are synthesized by the hydrothermal method, and the NO2 sensor is fabricated by using the above nanoparticles. The X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy and specific surface area measurement are used to characterize the micro morphology of the prepared nanoparticles in this paper, while the sensor performance is studied, including temperature, response recovery, selectivity and stability. In most samples, Fe atoms are completely doped into the In2O3 lattice as indicated by the XRD results. The SEM results show that the Fe-doped In2O3 nanoparticles prepared with Span-40 as activators are square in size of 50–200 nm, and a large number of small pores are distributed in it, which are also observed in the N2 adsorption/desorption experiment, this is one of the main reasons for the large specific surface area and high sensitivity of the nano materials. Studying the performance of the sensor, we find that when the molar ratio of In∶Fe is 9∶1, the sensor made of porous Fe-doped In2O3 nanoparticles has an excellent selectivity and short response recovery time for NO2 gas. The sensitivity of the sensor to 50-ppm-concentration (1 ppm = 1 mg/L) NO2 can reach 960.5 at 260 ℃, and the response time and recovery time are 5 s and 6 s respectively. Based on the theory of space charge and the knowledge of built-in barrier and energy band change before and after doping, the mechanism of the sensor is analyzed.
      Corresponding author: Cheng Tie-Dong, chengtiedong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971108, 61804023) and the Science and Technology Research Program of the Education Department of Jiangxi Province, China (Grant No. GJJ180485)
    [1]

    Xu X M, Zhang H J, Diao Q, Zhu Y S, Yang G 2019 Mater. Res. Express 6 17Google Scholar

    [2]

    Bo Z, Guo X Z, Wei X, Yang H C, Yan J H, Cen K F 2019 Physica E 109 156Google Scholar

    [3]

    Borgohain R, Das R, Mondal B, Yordsri V, Thanachayanont C, Baruah S 2018 IEEE Sens. J. 18 7203Google Scholar

    [4]

    赵博硕, 强晓永, 秦岳, 胡明 2018 物理学报 67 058101Google Scholar

    Zhao B S, Qiang X Y, Qin Y, Hu M 2018 Acta Phys. Sin. 67 058101Google Scholar

    [5]

    Zhou P F, Shen Y B, Lu W, Zhao S K, Li T T, Zhong X X, Cui B Y, Wei D Z, Zhang Y H 2020 J. Alloys Compd. 828 154395Google Scholar

    [6]

    Hung N M, Hieu N M, Chinh N D, Hien T T, Quang N D, Majumder S, Choi G, Kim C, Kim D 2020 Sens. Actuators, B 313 128001Google Scholar

    [7]

    Chen K X, Lu H, Li G, Zhang J N, Tian Y H, Gao Y, Guo Q M, Lu H B, Gao J Z 2020 Sens. Actuator, B 308 127716Google Scholar

    [8]

    Nam B, Ko T K, Hyun S K, Lee C 2019 Nano Converg. 6 40Google Scholar

    [9]

    Shen Y B, Zhong X X, Zhang J, Li T T, Zhao S K, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2019 Appl. Surf. Sci. 498 143873Google Scholar

    [10]

    Pawar K K, Shaikh J S, Mali S S, Navale Y H, Patil V B, Hong C K, Patil P S 2019 J. Alloys Compd. 806 726Google Scholar

    [11]

    Yang W, Chen H T, Li C L, Meng H 2020 Mater. Lett. 271 127782Google Scholar

    [12]

    Park B G, Reddeppa M, Kim Y H, Kim S G, Kim M D 2020 Nanotechnology 31 335503Google Scholar

    [13]

    Zhao S K, Shen Y B, Zhou P F, Hao F L, Xu X Y, Gao S L, Wei D Z, Ao Y X, Shen Y S 2020 Sens. Actuator, B 308 127729Google Scholar

    [14]

    Bi H S, Shen Y B, Zhao S K, Zhou P F, Gao S L, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2020 Vacuum 172 109086Google Scholar

    [15]

    Cheng M, Wu Z P, Liu G N, Zhao L J, Gao Y, Li S, Zhang B, Yan X, Lu G Y 2020 Sens. Actuator, B 304 127272Google Scholar

    [16]

    Ri J S, Li X W, Shao C L, Liu Y, Han C H, Li X H, Liu Y C 2020 Sens. Actuator, B 317 128194Google Scholar

    [17]

    Sabry R S, Agool I R, Abbas A M 2019 Silicon 11 2475Google Scholar

    [18]

    Lee O H, Tseng W J 2019 J. Mater. Sci.-Mater. Electron. 30 15145Google Scholar

    [19]

    Inyawilert K, Channei D, Tamaekong N, Liewhiran C, Wisitsoraat A, Tuantranont A, Phanichphant S 2016 J. Nanopart. Res. 18 40Google Scholar

    [20]

    Yoo Y K, Xue Q Z, Lee H C, Cheng S F, Xiang X D, Dionne G F, Xu S F, He J, Chu Y S, Preite S D, Lofland S E, Takeuchi I 2005 Appl. Phys. Lett. 86 042506Google Scholar

    [21]

    Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S 2008 Microporous Mesoporous Mater. 109 84Google Scholar

    [22]

    Cao M H, Wang Y D, Chen T, Antonietti M, Niederberger M 2008 Chem. Mater. 20 5781Google Scholar

    [23]

    Jia X, Fan H 2010 Mater. Res. Bull. 45 1496Google Scholar

    [24]

    Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong V, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S 2011 Sens. Actuator, B 160 580Google Scholar

    [25]

    Bai S L, Zhang K W, Luo R X, Li D Q, Chen A F, Liu C C 2012 J. Mater. Chem. 22 12643Google Scholar

    [26]

    Xiao B X, Zhao Q, Wang D X, Ma G S, Zhang M Z 2017 New J. Chem. 41 8530Google Scholar

    [27]

    Zhao J, Yang T L, Liu Y P, Wang Z Y, Li X W, Sun Y F, Du Y, Li Y C, Lu G Y 2014 Sens. Actuator, B 191 806Google Scholar

    [28]

    Han D M, Zhai L L, Gu F B, Wang Z H 2018 Sens. Actuator, B 262 655Google Scholar

    [29]

    Hu J, Liang Y F, Sun Y J, Zhao Z T, Zhang M, Li P W, Zhang W D, Chen Y, Zhuiykov S 2017 Sens. Actuator, B 252 116Google Scholar

    [30]

    Fahed C, Qadri S B, Kim H, Piqué A, Miller M, Mahadik N A, Rao M V, Osofsky M 2010 Phys. Status Solidi C 7 2298Google Scholar

  • 图 1  传感器灵敏度测量示意图 (a) 传感器结构图; (b) 传感测试系统

    Figure 1.  Diagram used to measure the sensitivity of sensor: (a) Structure of sensor; (b) sensor test system.

    图 2  Fe掺杂In2O3的XRD图谱

    Figure 2.  XRD patterns of Fe-doped In2O3.

    图 3  SEM图像 (a) 样品1; (b) 样品2; (c) 样品3; (d) 样品4; (e) 样品5; (f) 样品6

    Figure 3.  SEM images: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5; (f) S6.

    图 4  (a) 样品4的TEM图像; (b) 样品4的EDS光谱和SAED图案

    Figure 4.  (a) TEM image of S4; (b) EDS spectroscopy and SAED pattern taken from S4.

    图 5  (a) 样品1的N2吸附/脱附曲线; (b) 样品1的孔径分布; (c) 样品4的N2吸附/脱附曲线; (d) 样品4的孔径分布

    Figure 5.  N2 adsorption/desorption curves of (a) S1 and (c) S4; the pore size distribution of (b) S1 and (d) S4.

    图 6  掺杂In2O3结构形成机理图

    Figure 6.  Schematic illustrating the formation mechanism of the doped In2O3 structures.

    图 7  (a) 6种传感器在温度为260 ℃时放置在浓度为5−100 ppm的NO2下的气体响应; (b) 样品1−样品6的比表面积

    Figure 7.  (a) Gas response of the 6 sensors exposed to NO2 at concentrations ranging from 5 ppm to 100 ppm at 260 °C; (b) surface area of S1−S6.

    图 8  样品4气体响应随温度的变化 (a) 不同工作温度下的典型响应和恢复曲线; (b) 不同温度下对50 ppm NO2的气体响应

    Figure 8.  Gas response of S4 as a function of temperature: (a) Typical response and recovery curves at different working temperatures; (b) gas response to 50 ppm NO2 at different working temperatures.

    图 9  基于样品4制作的传感器在260 ℃时对NO2气体的响应-恢复曲线 (a)气体浓度范围为5−100 ppm; (b) 气体浓度为50 ppm

    Figure 9.  Gas response-recovery of the sensor based on S4 exposed to NO2 at 260 °C: (a) Gas concentrations ranging from 5 ppm to 100 ppm; (b) gas concentration is 50 ppm.

    图 10  在260 ℃时样品4对浓度为50 ppm不同试验气体的灵敏度

    Figure 10.  Selectivity of S4 to different test gases with a concentration of 50 ppm at 260 °C.

    图 11  在260 ℃时Fe掺杂In2O3传感器(S4)对浓度为50 ppm的NO2的稳定性测试(插图为S4在(a)第1天和(b) 第90天的气体响应)

    Figure 11.  Stability of the Fe-doped In2O3 structures (S4) sensor to NO2 with a concentration of 50 ppm at 260 °C (inset: gas response of S4 for (a) the first day and (b) the 90th day).

    图 12  (a) 反应示意图; (b) 传感机理图; (c) 能带图

    Figure 12.  (a) Schematic diagram; (b) gas sensing mechanism; (c) the band diagram.

    表 1  样品原材料组成表

    Table 1.  Composition of sample raw materials.

    样品编号组成及用量/gIn/Fe摩尔比
    In(NO3)3·4.5H2OFe(NO3)3·9H2OSpan-40
    样品1 (S1)0.572900.6030
    样品2 (S2)0.57290.12120.60305∶1
    样品3 (S3)0.57290.08660.60307∶1
    样品4 (S4)0.57290.06730.60309∶1
    样品5 (S5)0.57290.05050.603012∶1
    样品6 (S6)0.57290.04040.603015∶1
    DownLoad: CSV
  • [1]

    Xu X M, Zhang H J, Diao Q, Zhu Y S, Yang G 2019 Mater. Res. Express 6 17Google Scholar

    [2]

    Bo Z, Guo X Z, Wei X, Yang H C, Yan J H, Cen K F 2019 Physica E 109 156Google Scholar

    [3]

    Borgohain R, Das R, Mondal B, Yordsri V, Thanachayanont C, Baruah S 2018 IEEE Sens. J. 18 7203Google Scholar

    [4]

    赵博硕, 强晓永, 秦岳, 胡明 2018 物理学报 67 058101Google Scholar

    Zhao B S, Qiang X Y, Qin Y, Hu M 2018 Acta Phys. Sin. 67 058101Google Scholar

    [5]

    Zhou P F, Shen Y B, Lu W, Zhao S K, Li T T, Zhong X X, Cui B Y, Wei D Z, Zhang Y H 2020 J. Alloys Compd. 828 154395Google Scholar

    [6]

    Hung N M, Hieu N M, Chinh N D, Hien T T, Quang N D, Majumder S, Choi G, Kim C, Kim D 2020 Sens. Actuators, B 313 128001Google Scholar

    [7]

    Chen K X, Lu H, Li G, Zhang J N, Tian Y H, Gao Y, Guo Q M, Lu H B, Gao J Z 2020 Sens. Actuator, B 308 127716Google Scholar

    [8]

    Nam B, Ko T K, Hyun S K, Lee C 2019 Nano Converg. 6 40Google Scholar

    [9]

    Shen Y B, Zhong X X, Zhang J, Li T T, Zhao S K, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2019 Appl. Surf. Sci. 498 143873Google Scholar

    [10]

    Pawar K K, Shaikh J S, Mali S S, Navale Y H, Patil V B, Hong C K, Patil P S 2019 J. Alloys Compd. 806 726Google Scholar

    [11]

    Yang W, Chen H T, Li C L, Meng H 2020 Mater. Lett. 271 127782Google Scholar

    [12]

    Park B G, Reddeppa M, Kim Y H, Kim S G, Kim M D 2020 Nanotechnology 31 335503Google Scholar

    [13]

    Zhao S K, Shen Y B, Zhou P F, Hao F L, Xu X Y, Gao S L, Wei D Z, Ao Y X, Shen Y S 2020 Sens. Actuator, B 308 127729Google Scholar

    [14]

    Bi H S, Shen Y B, Zhao S K, Zhou P F, Gao S L, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2020 Vacuum 172 109086Google Scholar

    [15]

    Cheng M, Wu Z P, Liu G N, Zhao L J, Gao Y, Li S, Zhang B, Yan X, Lu G Y 2020 Sens. Actuator, B 304 127272Google Scholar

    [16]

    Ri J S, Li X W, Shao C L, Liu Y, Han C H, Li X H, Liu Y C 2020 Sens. Actuator, B 317 128194Google Scholar

    [17]

    Sabry R S, Agool I R, Abbas A M 2019 Silicon 11 2475Google Scholar

    [18]

    Lee O H, Tseng W J 2019 J. Mater. Sci.-Mater. Electron. 30 15145Google Scholar

    [19]

    Inyawilert K, Channei D, Tamaekong N, Liewhiran C, Wisitsoraat A, Tuantranont A, Phanichphant S 2016 J. Nanopart. Res. 18 40Google Scholar

    [20]

    Yoo Y K, Xue Q Z, Lee H C, Cheng S F, Xiang X D, Dionne G F, Xu S F, He J, Chu Y S, Preite S D, Lofland S E, Takeuchi I 2005 Appl. Phys. Lett. 86 042506Google Scholar

    [21]

    Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S 2008 Microporous Mesoporous Mater. 109 84Google Scholar

    [22]

    Cao M H, Wang Y D, Chen T, Antonietti M, Niederberger M 2008 Chem. Mater. 20 5781Google Scholar

    [23]

    Jia X, Fan H 2010 Mater. Res. Bull. 45 1496Google Scholar

    [24]

    Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong V, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S 2011 Sens. Actuator, B 160 580Google Scholar

    [25]

    Bai S L, Zhang K W, Luo R X, Li D Q, Chen A F, Liu C C 2012 J. Mater. Chem. 22 12643Google Scholar

    [26]

    Xiao B X, Zhao Q, Wang D X, Ma G S, Zhang M Z 2017 New J. Chem. 41 8530Google Scholar

    [27]

    Zhao J, Yang T L, Liu Y P, Wang Z Y, Li X W, Sun Y F, Du Y, Li Y C, Lu G Y 2014 Sens. Actuator, B 191 806Google Scholar

    [28]

    Han D M, Zhai L L, Gu F B, Wang Z H 2018 Sens. Actuator, B 262 655Google Scholar

    [29]

    Hu J, Liang Y F, Sun Y J, Zhao Z T, Zhang M, Li P W, Zhang W D, Chen Y, Zhuiykov S 2017 Sens. Actuator, B 252 116Google Scholar

    [30]

    Fahed C, Qadri S B, Kim H, Piqué A, Miller M, Mahadik N A, Rao M V, Osofsky M 2010 Phys. Status Solidi C 7 2298Google Scholar

  • [1] Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo JingTing. Gas sensors based on SnS2/In2O3 for high performance NO2 detection at room temperature. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231554
    [2] Zhang Yu-Qi, Wang Jun-Jie, Lü Zi-Yu, Han Su-Ting. Multimode modulated memristors for in-sensor computing system. Acta Physica Sinica, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [3] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [4] Wang Kun, Duan Gao-Yan, Lang Pei-Lin, Zhao Yu-Fang, Liu Jian-Bin, Song Gang. Biosensor based on plasmonic Mach-Zehnder interferometer with metallic gratings. Acta Physica Sinica, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [5] Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai. A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance. Acta Physica Sinica, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [6] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [7] Bian Xiao-Ge, Zhou Sheng, Zhang Lei, He Tian-Bo, Li Jin-Song. NO2 gas detection based on standard sample regression algorithm and cavity enhanced spectroscopy. Acta Physica Sinica, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [8] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [9] Wu Jingen, Gao Xiangyu, Chen Jianguo, Wang Chun-Ming, Zhang Shujun, Dong Shuxiang. Review of high temperature piezoelectric materials, devices, and applications. Acta Physica Sinica, 2018, 67(20): 207701. doi: 10.7498/aps.67.20181091
    [10] Wu Pei, Hu Xiao, Zhang Jian, Sun Lian-Feng. Research status and development graphene devices using silicon as the subtrate. Acta Physica Sinica, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [11] Wang Jia-Lu, Du Mu-Qing, Zhang Ling-Li, Liu Yong-Jun, Sun Wei-Min. Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals. Acta Physica Sinica, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [12] Sun Jie, Yang Jian-Feng, Yan Su, Yang Jing-Jing, Huang Ming. Transmission characteristics and potential applications of plasmon-assisted parallel-plated waveguide. Acta Physica Sinica, 2015, 64(7): 078402. doi: 10.7498/aps.64.078402
    [13] Liu Jin, Si Fu-Qi, Zhou Hai-Jin, Zhao Ming-Jie, Dou Ke, Wang Yu, Liu Wen-Qing. Observation of two-dimensional distributions of NO2 with airborne Imaging DOAS technology. Acta Physica Sinica, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [14] Luo Xue-Xue, Chen Jia-Bi, Hu Jin-Bing, Liang Bin-Ming, Jiang Qiang. Analysis and experimental investigation of the temperature property of sensors based on symmetrical metal-cladding optical waveguide. Acta Physica Sinica, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [15] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [16] Chen Bing-Zhang, Yi Hang, Yang Jin-Ge, Chi Zi-Hui, Rong Jian, Hu Bing, Jiang Hua-Bei. The human colorectal cancer tissue in vitro experimental study based on photoacoustic endoscopic system. Acta Physica Sinica, 2014, 63(8): 084204. doi: 10.7498/aps.63.084204
    [17] Zhu Li, Liu Shang-He, Zheng Hui-Zhi, Wei Ming, Hu Xiao-Feng, Sorokin Andrey. Modeling and experimental study of the mechanism of electrification from aero-engine jet. Acta Physica Sinica, 2013, 62(22): 225201. doi: 10.7498/aps.62.225201
    [18] Wang Ting, Wang Pu-Cai, Yu Huan, Zhang Xing-Ying, Zhou Bin, Si Fu-Qi, Wang Shan-Shan, Bai Wen-Guang, Zhou Hai-Jin, Zhao Heng. Intercomparison of slant column measurements of NO2 by ground-based MAX-DOAS. Acta Physica Sinica, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [19] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [20] Zhang Gui-Yin, Jin Yi-Dong. Optical-optical double-color and double-resonance multiphoton ionization spectrum of NO2. Acta Physica Sinica, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
Metrics
  • Abstract views:  5675
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2020
  • Accepted Date:  02 August 2020
  • Available Online:  07 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回