Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Half-metallic magnetism and electronic structures of CrPSe3 monolayers with multiple Dirac cones(withdraw)

Yang Jun-Tao Xiong Yong-Chen Huang Hai-Ming Luo Shi-Jun

Citation:

Half-metallic magnetism and electronic structures of CrPSe3 monolayers with multiple Dirac cones(withdraw)

Yang Jun-Tao, Xiong Yong-Chen, Huang Hai-Ming, Luo Shi-Jun
PDF
HTML
Get Citation
  • According to the first-principles calculation within PBE+U method and tight-binding model, the magnetic properties and electronic structures of two-dimensional (2D) CrPSe3 monolayer were investigated. Constructed by a Cr-honeycomb hexagonal lattice, 2D CrPSe3 was predicted to be in a half-metallic ferromagnetic state with dynamic stability, confirmed by the phonon spectrum with no imaginary dispersion. The Curie temperature was estimated as 224 K by Monte Carlo simulation within the Metropolis algorithm under the periodic boundary condition. The thermal stability of CrPSe3 monolayer was estimated at 300 K by a first-principles molecular dynamics simulation. It is found that the magnetic ground state of CrPSe3 monolayer is determined by a competition between the antiferomagnetic d-d direct exchange interactions and the Se-p orbitals mediated ferromagnetic p-d superexchange interactions. Most interestingly, in the half-metallic state the band structure exhibits multiple Dirac cones in the first Brillouin zone: two cones at K point showing a very high Fermi velocity${v_{\rm F}{(K)}} = 15.8 \times 10^5 \;{\rm m \!\cdot\! s^{-1}}$ about twice larger than the $ v_{\rm F} $ of graphene in the vicinity of Fermi level, and six cones at $ K'/2 $ points with ${ v_{\rm F} {(K'/2)}} = 10.1 \times 10^5\;{\rm m \!\cdot\! s^{-1}}$ close to the graphene's value. These spin-polarized Dirac cones are mostly composed of Cr ${\rm d}_{xz}$ and ${\rm d}_{yz}$ orbitals. The novel electronic structure of CrPSe3 monolayer is also confirmed by the HSE06 functional. A tight-binding model was built based on the Cr-honeycomb structure with two Cr-d orbitals as the basic with the first, second and third nearest-neighboring interactions, further demonstrating that the multiple Dirac cones are protected by the Cr-honeycomb lattice symmetry. Our findings indicate that 2D CrPSe3 monolayer is a candidate with potential applications in the low-dimensional, high speed and temperature spintronics.
      Corresponding author: Yang Jun-Tao, jtyang@huat.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hubei Province, China (Grant Nos. 2018CFB724, 2019CFB788), the Research Program of Education Bureau of HuBei Province, China (Grant No. D20171803), the Foundation of Discipline Innovation Team of HUAT, China, and the National Natural Science Foundation of China (Grant No. 11674113)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣 2020 物理学报 69 118101

    Wang X Y, Zhang H, Ruan Z L, Hao Z L, Yang X T, Cai J M, Lu J C 2020 Acta Phys. Sin. 69 118101

    [3]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [5]

    Han G H, Duong D L, Keum D H, Yun Se J, Lee Y H 2018 Chem. Rev. 118 6297Google Scholar

    [6]

    Burch K S, Mandrus D, Park J 2018 Nature 563 47Google Scholar

    [7]

    S Babar, Nadeem M, Dai Z, Fuhrer M S, Xue Q, Wang X, Bao Q 2018 Appl. Phys. Rev. 5 041105Google Scholar

    [8]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [9]

    邓雨君, 於逸骏, 张远波 2019 物理 2 88Google Scholar

    Deng Y J, Yu Y J, Zhang Y B 2019 Physics 2 88Google Scholar

    [10]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, et al. 2017 Nature 546 265Google Scholar

    [11]

    Wang F, Shifa T A, Yu P, He P, Liu Y, et al. 2018 Adv. Funct. Mater. 28 1802151Google Scholar

    [12]

    俞强, 郭琨, 张颖聪, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar

    Yu Q, Guo K, Zhang Y C, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar

    [13]

    龚吉祥, 严秀, 杨军, 葛敏, 皮雳, 朱文卡, 张昌锦 2018 低温物理学报 40 22Google Scholar

    Gong J X, Yan X, Yang J, Ge M, Pi L, Zhu W K, Zhang C J 2018 Chin. J. Low Temp. Phys. 40 22Google Scholar

    [14]

    Sivadas N, Daniels M W, Swendsen R H, Okamoto S, Xiao D 2015 Phys. Rev. B 91 235425Google Scholar

    [15]

    Chittari B L, Park Y, Lee, Han D M, MacDonald A H, Hwang E, Jung J 2016 Phys. Rev. B 94 184428Google Scholar

    [16]

    Kim S Y, Kim T Y, Sandilands L J, Sinn S, Lee M C, et al. 2018 Phys. Rev. Lett. 120 136402Google Scholar

    [17]

    Li X, Cao T, Niu Q, Shi J, Feng J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 3738Google Scholar

    [18]

    Pei Q, Wang X, Zou J, Mi W 2018 J. Mater. Chem. C 6 8092Google Scholar

    [19]

    Gu Y, Zhang Q, Le C, Li Y, Xiang T, Hu J 2019 Phys. Rev. B 100 165405Google Scholar

    [20]

    Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 197 035125

    [21]

    Gusmão R, Sofer Z, Sedmidubský D, Huber Š, Martin P 2017 ACS Catal. 7 8159Google Scholar

    [22]

    Kresse G, Hafner J 1994 J. Phys. Condens. Matter 6 8245Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [27]

    Blöchl P E, Jepsen O, Andersen O 1994 Phys. Rev. B 49 16223Google Scholar

    [28]

    Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar

    [29]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [30]

    Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E 1953 J. Chem. Phys. 21 1087Google Scholar

    [31]

    Pizzi G, Vitale V, Arita R, et al. 2019 J. Phys. Condens. Matter 32 165902Google Scholar

    [32]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2019 arXiv: 1908.08269

    [33]

    Goodenough J B 1955 Phys. Rev. B 100 564Google Scholar

    [34]

    Kanamori J 1960 J. Appl. Phys. 31 S14Google Scholar

    [35]

    Anderson P W 1959 Phys. Rev. B 115 2Google Scholar

    [36]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

  • 图 1  二维CrPSe3的(a) 晶体结构俯视图和侧视图(灰色虚线表示晶体单胞), (b) 声子谱(插图为布里渊区及高对称点)和声子态密度

    Figure 1.  (a) Top and side views of two-dimensional (2D) CrPSe3 monolayer with the hexagonal unit cell denoted by grey broken lines; (b) the phonon spectrum and the corresponding density of states (DOS) for Cr, P and Se atoms, respectively, the inset shows the Brillouin zone of 2D CrPSe3 monolayer

    图 2  二维CrPSe3的交换作用能$\Delta E$ (meV) 随(a)面内双轴压力(负值表示压缩, 正值表示膨胀)和(b) $U$值的变化曲线, 图(a)内插图是铁磁态和反铁磁态的自旋电荷密度图, 等值面密度为 3 × 10–3 ${\rm{e}}$·Å–3, 淡黄和浅蓝分别代表自旋向上和自旋向下的电荷密度分布

    Figure 2.  Exchange parameters $\Delta E=E({\rm{AFM}})-E({\rm{FM}})$ (meV) with respect to (a) in-plane biaxial strain (negative value denotes compressive and postive means tensile) and (b) U value of 2D CrPSe3. The insects of panel (a) is the spin electron density of 2D CrPSe3 in FM and AFM states with isovalue of 3 × 10–3 ${\rm{e }}$·Å–3. The yellow and cyan colors represent spin-up and down electrons, respectively

    图 3  二维CrPSe3 (a)相对磁矩和比热容相对于温度的蒙特卡罗模拟变化曲线, 以及(b) 300 K温度下$4\times4\times1$超胞总能随时间的变化, 插图是弛豫6 ps 后的晶体结构图

    Figure 3.  (a) The Monte Carlo simulated magnetic moment and specific heat capacity as a function of temperature and (b) total energy fluctuations with respect to the simulation time at 300 K of CrPSe3 monolayer. The inset shows the corresponding structure at 300 K after the simulation for 6 ps

    图 4  二维CrPSe3的(a) 自旋向上和自旋向下的能带图, 以及(b) 费米面附近的三维能带图(费米能级设置为0 eV)

    Figure 4.  (a) Spin up and spin down band structures along high symmetry $k$-points and (b) three-dimensional band structures near Fermi level of 2D CrPSe3. Fermi level is set to 0 eV

    图 5  二维CrPSe3的总态密度和各元素的分波态密度图(费米能级设置为0 eV)

    Figure 5.  Total and partial density of states of 2D CrPSe3. Fermi level is set to 0 eV

    图 A1  (a) HSE06杂化泛函与PBE + U计算结果比较; (b)几个典型的U值的计算结果; (c) 几个典型的压力值下二维CrPSe3自旋向上和自旋向下的能带图; 费米能级设置为0 eV

    Figure A1.  Spin up and spin down band structures along high symmetry $k$-points: (a) Calculated by HSE06 functional results compared with that of PBE + U method; (b) calculated by some typical U value; (c) under typical strain effeccts of 2D CrPSe3. Fermi level is set to 0 eV

    图 6  紧束缚近似模型 (a) 二维CrPSe3轨道跃迁示意图; (b)考虑$t_1$, $t_2$$t_3$跃迁系数时二维CrPSe3的紧束缚近似能带图; (c)仅考虑$t_3$跃迁系数时二维CrPSe3的紧束缚近似能带图

    Figure 6.  Tight binding model: (a) Hoping parameters illustration and band structures considered (b) all $t_1$, $t_2$ and $t_3$ hopping parameters and (c) only $t_3$ hopping parameters of 2D CrPSe3 monolayer

    表 1  二维CrPSe3的优化结果(晶格常数$a$(Å)、晶体厚度$h$(Å)、部分键长$d$(Å) 和原子间的夹角$\theta\;(^\circ)$)

    Table 1.  Optimized lattice constants $a$(Å), monolayer thickness $h$(Å), some bond legths $d$(Å) and angle $\theta\;(^\circ)$ between some atoms of 2D CrPSe3 monolayer

    晶格常数/Å 键长 d 原子夹角$\theta /(^\circ)$
    a 6.364 Cr—Cr 3.674 Cr—Se—Cr 85.3
    b 6.364 Cr—Se 2.711 Se—P—Se 113.5
    h 3.394 P—Se 2.211
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣 2020 物理学报 69 118101

    Wang X Y, Zhang H, Ruan Z L, Hao Z L, Yang X T, Cai J M, Lu J C 2020 Acta Phys. Sin. 69 118101

    [3]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [5]

    Han G H, Duong D L, Keum D H, Yun Se J, Lee Y H 2018 Chem. Rev. 118 6297Google Scholar

    [6]

    Burch K S, Mandrus D, Park J 2018 Nature 563 47Google Scholar

    [7]

    S Babar, Nadeem M, Dai Z, Fuhrer M S, Xue Q, Wang X, Bao Q 2018 Appl. Phys. Rev. 5 041105Google Scholar

    [8]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [9]

    邓雨君, 於逸骏, 张远波 2019 物理 2 88Google Scholar

    Deng Y J, Yu Y J, Zhang Y B 2019 Physics 2 88Google Scholar

    [10]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, et al. 2017 Nature 546 265Google Scholar

    [11]

    Wang F, Shifa T A, Yu P, He P, Liu Y, et al. 2018 Adv. Funct. Mater. 28 1802151Google Scholar

    [12]

    俞强, 郭琨, 张颖聪, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar

    Yu Q, Guo K, Zhang Y C, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar

    [13]

    龚吉祥, 严秀, 杨军, 葛敏, 皮雳, 朱文卡, 张昌锦 2018 低温物理学报 40 22Google Scholar

    Gong J X, Yan X, Yang J, Ge M, Pi L, Zhu W K, Zhang C J 2018 Chin. J. Low Temp. Phys. 40 22Google Scholar

    [14]

    Sivadas N, Daniels M W, Swendsen R H, Okamoto S, Xiao D 2015 Phys. Rev. B 91 235425Google Scholar

    [15]

    Chittari B L, Park Y, Lee, Han D M, MacDonald A H, Hwang E, Jung J 2016 Phys. Rev. B 94 184428Google Scholar

    [16]

    Kim S Y, Kim T Y, Sandilands L J, Sinn S, Lee M C, et al. 2018 Phys. Rev. Lett. 120 136402Google Scholar

    [17]

    Li X, Cao T, Niu Q, Shi J, Feng J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 3738Google Scholar

    [18]

    Pei Q, Wang X, Zou J, Mi W 2018 J. Mater. Chem. C 6 8092Google Scholar

    [19]

    Gu Y, Zhang Q, Le C, Li Y, Xiang T, Hu J 2019 Phys. Rev. B 100 165405Google Scholar

    [20]

    Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 197 035125

    [21]

    Gusmão R, Sofer Z, Sedmidubský D, Huber Š, Martin P 2017 ACS Catal. 7 8159Google Scholar

    [22]

    Kresse G, Hafner J 1994 J. Phys. Condens. Matter 6 8245Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [27]

    Blöchl P E, Jepsen O, Andersen O 1994 Phys. Rev. B 49 16223Google Scholar

    [28]

    Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar

    [29]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [30]

    Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E 1953 J. Chem. Phys. 21 1087Google Scholar

    [31]

    Pizzi G, Vitale V, Arita R, et al. 2019 J. Phys. Condens. Matter 32 165902Google Scholar

    [32]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2019 arXiv: 1908.08269

    [33]

    Goodenough J B 1955 Phys. Rev. B 100 564Google Scholar

    [34]

    Kanamori J 1960 J. Appl. Phys. 31 S14Google Scholar

    [35]

    Anderson P W 1959 Phys. Rev. B 115 2Google Scholar

    [36]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

  • [1] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [2] Xu Qiang, Duan Kang, Xie Hao, Zhang Qin-Rong, Liang Ben-Quan, Peng Zhen-Kai, Li Wei. First principle study on gas sensor mechanism of black-AsP monolayer. Acta Physica Sinica, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [3] Zhu Ping, Zhang Qiang, Gou Hua-Song, Wang Ping-Ping, Shao Pu-Zhen, Kobayashi Equo, Wu Gao-Hui. First-principles calculation of diamond/Al interface properties and study of interface reaction. Acta Physica Sinica, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [4] Qin Wen-Jing, Xu Bo, Sun Bao-Zhen, Liu Gang. First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms. Acta Physica Sinica, 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [5] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [6] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [7] Liang Jin-Ling, Zhang Yun, Qiu Xiao-Yan, Wu Sheng-Yu, Luo Ya. First-principles study of Fe:Mg:LiTaO3 crystals. Acta Physica Sinica, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [8] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [9] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [10] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [11] Wang Ai-Ling, Wu Zhi-Min, Wang Cong, Hu Ai-Yuan, Zhao Ruo-Yu. First-priciples study on Mn-doped LiZnAs, a new diluted magnetic semiconductor. Acta Physica Sinica, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [12] Su Rui, Long Yao, Jiang Sheng-Li, He Jie, Chen Jun. Elastic properties of β-HMX under extra pressure: a first principles study. Acta Physica Sinica, 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [13] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [14] Han Jiu-Rong, Jiang Xue-Fan, Liu Xian-Feng. First-principles studies of helical-spin order in frustrated triangular antiferromagnet AgCrO2. Acta Physica Sinica, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [15] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [16] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [17] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [18] Wang Liu-Ding, Chen Guo-Dong, Zhang Jiao-Qiang, Yang Min, Wang Yi-Jun, An Bo. First-principles study on field emission properties of carbon nanocone. Acta Physica Sinica, 2009, 58(11): 7852-7856. doi: 10.7498/aps.58.7852
    [19] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [20] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
Metrics
  • Abstract views:  6940
  • PDF Downloads:  265
  • Cited By: 0
Publishing process
  • Received Date:  22 June 2020
  • Accepted Date:  27 July 2020
  • Available Online:  30 November 2020
  • Published Online:  20 December 2020

/

返回文章
返回