Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of polymer based dielectrics for high-temperature capacitor energy storage

Dong Jiu-Feng Deng Xing-Lei Niu Yu-Juan Pan Zi-Zhao Wang Hong

Citation:

Research progress of polymer based dielectrics for high-temperature capacitor energy storage

Dong Jiu-Feng, Deng Xing-Lei, Niu Yu-Juan, Pan Zi-Zhao, Wang Hong
PDF
HTML
Get Citation
  • Dielectric capacitors are widely used in modern electronic systems and power systems because of their advantages of fast charge discharge speed and high-power density. Nowadays, the new products related to renewable energy, such as hybrid electric vehicles, grid connected photovoltaic power generation and wind turbines, downhole oil, gas exploration, etc., put forward higher requirements for the energy storage capabilities of dielectric capacitors in elevated-temperature. In this review, the research progress of the polymer-based dielectrics for high-temperature capacitor energy storage in recent years is systematically reviewed to offer benefits for further study. Firstly, the physical mechanism of energy storage of dielectric materials is introduced, and several conduction mechanisms of dielectric materials are summarized and analyzed; then, several strategies to improve the high-temperature energy storage performance of polymer dielectrics are presented, including the nanocomposite modification and design of layer-structured polymer composites, and the molecular structure design and chemical crosslinking treatment of dielectric polymer. Finally the scientific and technological problems in the application of dielectric polymer and their nanocomposites for high-temperature capacitor energy storage are discussed, and a possible research direction in the future is prospected.
      Corresponding author: Wang Hong, wangh6@sustech.edu.cn
    • Funds: Project supported by the Science and Technology Program of Shenzhen, China (Grant Nos. KQTD20180411143514543, JCYJ20180504165831308), the Key Area R&D Program of Guangdong Province, China (Grant No. 2020B010176001), and the DRC Project of Shenzhen, China (Grant No. [2018]1433)
    [1]

    Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar

    [2]

    Lin X R, Salari M, Arava L M R, Ajayan P M, Grinstaff M W 2016 Chem. Soc. Rev. 45 5848Google Scholar

    [3]

    Luo H, Zhou X F, Ellingford C, Zhang Y, Chen S, Zhou K C, Zhang D, Bowen C B, Wan C Y 2019 Chem. Soc. Rev. 48 4424Google Scholar

    [4]

    Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187Google Scholar

    [5]

    Yuan Q B, Yao F Z, Cheng S D, Wang L X, Wang Y F, Mi S B, Wang Q, Wang X H, Wang H 2020 Adv. Funct. Mater. 30 2000191Google Scholar

    [6]

    Li Q, Zhang G Z, Liu F H, Han K, Gadiniski M R, Xiong C X, Wang Q 2015 Energy Environ. Sci. 8 922Google Scholar

    [7]

    Li Q, Yao F Z, Liu Y, Zhang G Z, Wang H, Wang Q 2018 Ann. Rev. Mater. Res. 48 219Google Scholar

    [8]

    Watson J, Castro G 2012 Analog Dialogue 46 1

    [9]

    Tan D, Zhang L, Chen Q, Irwin P 2014 J. Electron. Mater. 43 4569Google Scholar

    [10]

    Johnson R W, Evans J L, Jacobsen P, Thompson J R, Christopher M 2004 IEEE Trans. Electron. Packag. Manuf. 27 164Google Scholar

    [11]

    Barshaw E J, White J, Chait M J, Cornette J B, Bustamante J, Folli F, Biltchick D, Borelli G, Pocco G, Rabuffi M 2007 IEEE Trans. Magn. 43 223Google Scholar

    [12]

    李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 物理学报 51 776Google Scholar

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776Google Scholar

    [13]

    Gadinski M R, Han K, Li Q, Zhang G, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981Google Scholar

    [14]

    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [15]

    Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S, Zhang Q M 2009 Appl. Phys. Lett. 94 143Google Scholar

    [16]

    Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar

    [17]

    Prajapati P, Thakui V K, Gupta R 2016 Chem. Rev. 116 4260Google Scholar

    [18]

    Zhou L, Jiang Y F 2019 Mater. Sci. Technol. 36 1Google Scholar

    [19]

    Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X 2017 Adv. Mater. 29 1601727Google Scholar

    [20]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [21]

    Kojima K, Takai Y, Ieda M 1986 J. Appl. Phys. 59 2655Google Scholar

    [22]

    Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 1Google Scholar

    [23]

    Akram S, Yang Y, Zhong X, Bhutta S, Wu G N, Castellon J, Zhou K 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3505Google Scholar

    [24]

    Liu A, Zhu H H, Sun H B, Xu Y, Noh Y Y 2018 Adv. Mater. 30 1706364Google Scholar

    [25]

    Vecchio M A, Meddeb A B, Lanagan M T, Ounaies Z, Shallenberger J R 2018 J. Appl. Phys. 124 114102Google Scholar

    [26]

    Sawa A 2008 Mater. Today 11 28Google Scholar

    [27]

    Angle R L, Talley H E 1978 IEEE Trans. Electron Devices 25 1277Google Scholar

    [28]

    Chiu F C, Lee C Y, Pan T M 2009 J. Appl. Phys. 105 074103Google Scholar

    [29]

    Calvet L, Wheeler R, Reed M 2002 Appl. Phys. Lett. 80 1761Google Scholar

    [30]

    Chiu F C 2006 J. Appl. Phys. 100 114102Google Scholar

    [31]

    Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843Google Scholar

    [32]

    Laghari J R, Sarjeant W J 1992 IEEE Trans. Power Electron. 7 251Google Scholar

    [33]

    Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Mater. 30 1704380Google Scholar

    [34]

    Chi Q G, Gao Z Y, Zhang T D, Zhang C H, Zhang Y, Chen Q G, Wang X, Lei Q Q 2019 ACS Sustainable Chem. Eng. 7 748Google Scholar

    [35]

    Tong H, Fu J, Ahmad A, Fan T, Hou Y D, Xu J 2019 Macromol. Mater. Eng. 304 1800709Google Scholar

    [36]

    James J C 1986 Polym. Compos. 7 158Google Scholar

    [37]

    Ho J S, Greenbaum S G 2018 ACS Appl. Mater. Interfaces 10 29189Google Scholar

    [38]

    Mannodi-Kanakkithodi A, Treich G M, Huan T D, Ma R, Tefferi M, Cao Y, Sotzing G A, Ramprasad R 2016 Adv. Mater. 28 6277Google Scholar

    [39]

    Klein R J, Barber P, Chance W M, Loye H C Z 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1234Google Scholar

    [40]

    Diaham S, Saysouk F, Locatelli M L, Lebey T 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2795Google Scholar

    [41]

    Chi Q G, Dong J F, Zhang C H, Wong C P, Wang X, Lei Q Q 2016 J. Mater. Chem. C 4 8179Google Scholar

    [42]

    Wang S, Huang X Y, Wang G Y, Wang Y, He J L, Jiang P K 2015 J. Phys. Chem. C 119 25307Google Scholar

    [43]

    冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲 2016 物理学报 65 188101Google Scholar

    Feng Q, Li M K, Tang H T, Wang X D, Gao Z M, Meng F L 2016 Acta Phys. Sin. 65 188101Google Scholar

    [44]

    Pan Z B, Yao L M, Ge G L, Shen B, Zhai J W 2018 J. Mater. Chem. A 6 14614Google Scholar

    [45]

    Zou K L, Dan Y, Yu Y X, Zhang Y, Zhang Q F, Lu Y M, Huang H T, Zhang X, He Y B 2019 J. Mater. Chem. A 7 13473Google Scholar

    [46]

    Feng Y, Zhou Y H, Zhang T D, Zhang C H, Zhang Y Q, Zhang Y, Chen Q G, Chi Q G 2020 Energy Storage Mater. 25 180Google Scholar

    [47]

    Yu K, Wang H, Zhou Y C, Bai Y Y, Niu Y J 2013 J. Appl. Phys. 113 034105Google Scholar

    [48]

    Yu K, Niu Y J, Xiang F, Zhou Y C, Bai Y Y, Wang H 2013 J. Appl. Phys. 114 174107Google Scholar

    [49]

    Wu Y H, Zha J W, Yao Z Q, Sun F, Li R K Y, Dang Z M 2015 RSC Adv. 9 44749Google Scholar

    [50]

    Huang X Y, Jiang P K 2015 Adv. Mater. 27 546Google Scholar

    [51]

    Hu P H, Sun W D, Fan M Z, et al. 2018 Appl. Surf. Sci. 458 743Google Scholar

    [52]

    Sun W D, Lu X J, Jiang J Y, Zhang X, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2017 J. Appl. Phys. 121 244101Google Scholar

    [53]

    Shen Z H, Wang J J, Jiang J Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Energy Mater. 8 1800509Google Scholar

    [54]

    Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [55]

    Li Y S, Zhou Y, Zhu Y J, Cheng S, Yuan C, Hu J, He J L, Li Q 2020 J. Mater. Chem. A 8 6576Google Scholar

    [56]

    Wu L Y, Wu K, Liu D Y, Huang R, Huo J L, Chen F, Fu Q 2018 J. Mater. Chem. A 6 7573Google Scholar

    [57]

    Wu L Y, Wu K, Lei C X, Liu D Y, Du R N, Chen F, Fu Q 2019 J. Mater. Chem. A 7 7664Google Scholar

    [58]

    Liu F H, Li Q, Li Z Y, Liu Y, Dong L J, Xiong C X, Wang Q 2017 Compos. Sci. Technol. 142 139Google Scholar

    [59]

    Ai D, Li H, Zhou Y, et al. 2020 Adv. Energy Mater. 10 1903881Google Scholar

    [60]

    Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar

    [61]

    Li H, Ren L L, Ai D, Han Z B, Liu Y, Yao B, Wang Q 2020 InfoMat. 2 389Google Scholar

    [62]

    Thakur Y, Zhang T, Iacob C, Yang T N, Bernholc J, Chen L Q, Runt J, Zhang Q M 2017 Nanoscale 9 10992Google Scholar

    [63]

    Chadband W G 1992 IEE Rev. 38 404Google Scholar

    [64]

    Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M 2020 Sci. Adv. 6 6622Google Scholar

    [65]

    Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905Google Scholar

    [66]

    Bouharrasa F E, Raihane M, Ameduri B 2020 Prog. Mater. Sci. 113 100670Google Scholar

    [67]

    Niu Y J, Xiang F, Wang Y F, Chen J, Wang H 2018 Phys. Chem. Chem. Phys. 20 6598Google Scholar

    [68]

    Niu Y J, Wang H 2019 ACS Appl. Nano Mater. 2 627Google Scholar

    [69]

    Zhang X, Li B W, Dong L J, Liu H X, Chen W, Shen Y, Nan C W 2018 Adv. Mater. Interfaces 5 1800096Google Scholar

    [70]

    Pan Z B, Yao L M, Zhai J W, Yao X, Chen H 2018 Adv. Mater. 30 1705662Google Scholar

    [71]

    Rahimabady M, Mirshekarloo M S, Yao K, Lu L 2013 Phys. Chem. Chem. Phys. 15 16242Google Scholar

    [72]

    Liu S, Xue S X, Shen B, Zhai J W 2015 Appl. Phys. Lett. 107 032907Google Scholar

    [73]

    Choudhury A 2012 Polym. Int. 61 696Google Scholar

    [74]

    Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou K C 2015 ACS Appl. Mater. Interfaces 7 8061Google Scholar

    [75]

    Liu J, Shen Z H, Xu W H, Zhang Y, Qian X S, Jiang Z H, Zhang Y H 2020 Small 2000714Google Scholar

    [76]

    Xu W H, Liu J, Chen T W, Jiang X Y, Qian X S, Zhang Y, Jiang Z H, Zhang Y H 2019 Small 15 1901582Google Scholar

    [77]

    Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020 Energy Storage Mater. 28 255Google Scholar

    [78]

    Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658Google Scholar

    [79]

    Wang Y F, Wang L X, Yuan Q B, et al. 2018 Nano Energy 44 364Google Scholar

    [80]

    Chen J, Wang Y F, Yuan Q B, Xu X W, Niu Y J, Wang Q, Wang H 2018 Nano Energy 54 288Google Scholar

    [81]

    Jiang J Y, Shen Z H, Qian J, Dan Z, Guo M, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [82]

    Chen J, Wang Y F, Xu X W, Yuan Q B, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. A 7 3729Google Scholar

    [83]

    Wang Y F, Chen J. Li Y, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. A 7 2965Google Scholar

    [84]

    Chen X Y, Tseng J K, Treufeld I, Mackey M, Schuele D E, Li R P, Fukuto M, Baer E, Zhu L 2017 J. Mater. Chem. C 5 10417Google Scholar

    [85]

    Li Z P, Chen X Y, Zhang C, Baer E, Langhe D, Ponting Ml, Brubaker M, Hosking T, Li R P, Fukuto M, Zhu L 2019 ACS Appl. Polym. Mater. 1 867Google Scholar

    [86]

    Tewari P, Rajagopalan R, Furman E, Lanagan M T 2010 Langmuir 26 18817Google Scholar

    [87]

    Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W 2014 Adv. Funct. Mater. 24 3172Google Scholar

    [88]

    Pan Z B, Liu B H, Zhai J W, Yao L M, Yang K, Shen B 2017 Nano Energy 40 587Google Scholar

    [89]

    Tseng J K, Tang S, Zhou Z, Mackey M, Carr J M, Mu R, Flandin L, Schuele D E, Baer E, Zhu L 2014 Polymer 55 8Google Scholar

    [90]

    Mackey M, Hiltner A, Baer E, Flandin L, Wolak M A, Shirk J S 2009 J. Phys. D: Appl. Phys. 42 175304Google Scholar

    [91]

    Li Q, Liu F H, Yang T N, Gadinski M R, Zhang G Z, Chen L Q, Wang Q 2016 Proc. Natl. Acad. Sci. U.S.A. 113 9995Google Scholar

    [92]

    Azizi A, Gadinski M R, Li Q, AlSaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [93]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [94]

    Bonardd S, Moreno-Serna V, Kortaberria G, Díaz D D, Leiva A, Saldías C 2019 Polymer 11 317Google Scholar

    [95]

    Peng X W, Wu Q, Jiang S H, Hanif M, Chen S L, Hou H Q 2014 J. Appl. Polym. Sci. 131 40828Google Scholar

    [96]

    Zhuang Y B, Seong J G, Lee Y M 2019 Prog. Polym. Sci. 92 35Google Scholar

    [97]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego: Academic Press) p573

    [98]

    Wang Y, Zhou X, Lin M R, Zhang Q M 2009 Appl. Phys. Lett. 94 154Google Scholar

    [99]

    Cheng Z X, Lin M R, Wu S, Thakur Y, Zhou Y, Jeong D Y, Shen Q D, Zhang Q M 2015 Appl. Phys. Lett. 106 202902Google Scholar

    [100]

    Wu S, Li W P, Lin M R, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang Q M 2013 Adv. Mater. 25 1734Google Scholar

    [101]

    Qiao Y L, Islam M S, Yin X D, Han K, Yan Y, Zhang J Y, Wang Q, Ploehn H J, Tang C B 2015 Polymer 72 428Google Scholar

    [102]

    Yuan X P, Matsuyama Y, Chung T C M 2010 Macromolecules 43 4011Google Scholar

    [103]

    Misra M, Agarwal M, Sinkovits D W, Kumar S K, Wang C C, Pilania G, Ramprasad R, Weiss R A, Yuan X P, Mike Chung T C 2014 Macromolecules 47 1122Google Scholar

    [104]

    Zhang M, Zhang L, Zhu M, Wang Y G, Li N W, Zhang Z J, Chen Q, An L N, Lin Y H, Nan C W 2016 J. Mater. Chem. A 4 4797Google Scholar

    [105]

    Chou Y H, Yen H J, Tsai C L, Lee W Y, Liou G S, Chen W C 2013 J. Mater. Chem. C 1 3235Google Scholar

    [106]

    Treufeld I, Wang D H, Kurish B A, Tan L S 2014 J. Mater. Chem. A 2 20683Google Scholar

    [107]

    Zhang Z B, Wang D H, Litt M H, Tan L S, Zhu L 2018 Angew. Chem. Int. Ed. 130 1547Google Scholar

    [108]

    Zhang Z B, Zheng J F, Premasiri K, Kwok M H, Li Q, Li R P, Zhang S B, Litt M H, Gao X P A, Zhu L 2020 Mater. Horiz. 7 592Google Scholar

    [109]

    Yang R Q, Wei R B, Li K, Tong L F, Jia K, Liu X B 2016 Sci. Rep. 6 36434Google Scholar

    [110]

    Yang J, Yang X L, Zou Y K, Zhan Y Q, Zhao R, Liu X B 2012 J. Appl. Polym. Sci. 126 1129Google Scholar

    [111]

    Hanley T L, Burford R P, Fleming R J, Barber K W 2003 IEEE Electr. Insul. Mag. 19 13Google Scholar

    [112]

    Zhou Q, Ma J, Dong S, Li X, Cui G 2019 Adv. Mater. 31 1902029Google Scholar

    [113]

    Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q 2013 Nat. Commun. 4 2845Google Scholar

    [114]

    Meereboer N L, Terzić I, van der Steeg P, Portale G, Loos K 2019 J. Mater. Chem. A 7 2795Google Scholar

    [115]

    Chen X Z, Li Z W, Cheng Z X, Zhang J Z, Shen Q D, Ge H X, Li H T 2011 Macromol. Rapid Commun. 32 94Google Scholar

    [116]

    Tan S, Hu X, Ding S, Zhang Z, Li H, Yang L 2013 J. Mater. Chem. A 1 10353Google Scholar

    [117]

    Li H, Gadinski M R, Huang Y Q, et al. 2020 Energy Environ. Sci. 13 1279Google Scholar

    [118]

    Chen S Y, Meng G D, Kong B, Xiao B, Wang Z D, Jing Z, Gao Y S, Wu G L, Wang H, Cheng Y H 2020 Chem. Eng. J. 387 123662Google Scholar

    [119]

    Wang Y X, Huang X Y, Li T, Wang Z W, Li L Q, Gu X J, Jiang P K 2017 J. Mater. Chem. A 5 20737Google Scholar

    [120]

    Hung C C, Wu H C, Chiu Y C, Tung S H, Chen W C 2016 J. Polym. Sci. Polym. Chem. 54 3224Google Scholar

  • 图 1  介电电容器、电化学电容器与电池的能量密度和功率密度的对比图

    Figure 1.  Comparison of power density and energy density capabilities of dielectric capacitors, electrochemical capacitors, and batteries.

    图 2  (a) 两个金属电极之间的电介质电容器示意图; (b) 电介质材料的电位移-电场强度关系曲线

    Figure 2.  (a) Schematic diagram of dielectric capacitor between two metal electrodes; (b) electric displacement-electric field (D-E) hysteresis loop of a dielectric material.

    图 3  各种电导机制的示意图

    Figure 3.  Schematic diagrams of various conduction mechanisms.

    图 4  (a) PI-STO纳米复合膜制备的电容器示意图; 当电场强度为200 kV/mm, 400 K温度条件下工作时, 由(b) 纯PI, (c) 垂直纳米纤维, (d) 垂直纳米片, (e) 随机纳米颗粒, (f) 平行纳米纤维, (g) 平行纳米片填充的纳米复合薄膜制备的不同电容器的稳态温度分布; (h) 薄膜电容器内的最大温度Tmax与热导率κz和电导率σz的函数关系图; (i) 6种情况下, 最大温度Tmax(红色条)、击穿强度劣化因子β (蓝色条)和介电损耗tanδ (黑色条)的性能比较[53]

    Figure 4.  (a) Schematic illustration of a real capacitor made by winding the PI-STO nanocomposite film. When working under an applied electric field of 200 kV/mm and a surrounding temperature of 400 K, the steady-state temperature distributions in different capacitors made by film nanocomposites filled by (b) pure polymer, (c) vertical nanofibers, (d) vertical nanosheets, (e) random nanoparticles, (f) parallel nanofibers, and (g) parallel nanosheets. (h) Maximal temperature Tmax inside the film capacitor as function of the thermal conductivity component κz and electrical conductivity component σz. (i) Comparisons of the maximal temperature Tmax (red bar), breakdown strength deterioration factor β (blue bar), and dielectric loss tanδ (black bar) among six circumstances[53].

    图 5  (a) 在25 ℃和1 kHz下, PI纳米复合材料的介电常数和损耗随填料含量的变化; PI和PI纳米复合材料在150 ℃下的(b) Weibull击穿强度和(c)储能性能; (d) 150 ℃下, 模拟电流密度分布随Al2O3, HfO2和TiO2填料含量和外加电场的变化[59]

    Figure 5.  (a) Dielectric constant and loss of the PI nanocomposites as a function of filler content at 25 ℃ and 1 kHz; (b) Weibull breakdown strength and (c) energy density performance of PI and the PI nanocomposites measured at 150 ℃; (d) simulated current density distribution as a function of Al2O3, HfO2, and TiO2 filler content and the applied electric field at 150 ℃[59].

    图 6  (a) 蜘蛛丝和蜘蛛丝的显微结构; (b) BN-BCB@DPAES复合材料的工艺图[76]

    Figure 6.  (a) Spider silk and the hierarchical microscopic structure of the spider silk; (b) schematic of preparation process of BN-BCB@DPAES films[76].

    图 7  (a) Roll-to-roll PECVD示意图; (b) 聚合物表层沉积SiO2的断面扫描电子显微镜图; (c) 聚合物表层沉积SiO2的断面能量色散X射线图谱; (d) 在120 ℃下, BOPP薄膜表层沉积180 nm 厚度的SiO2前后的储能密度和储能效率对比; (e) 在150 ℃下, 储能效率大于90%时, 各种电介质聚合物薄膜表层沉积SiO2前后的最大放电能量密度[93]

    Figure 7.  (a) Schematic of the roll-to-roll PECVD; (b) cross-sectional scanning electron microscope image of the coating layer on polymer film; (c) element concentration from energy dispersive X-ray spectroscopy scanned across the coating layer deposited on polymer film; (d) charge-discharge efficiency and discharged energy density of BOPP and BOPP-SiO2 films with 180 nm coating layer on each side of the polymer measured at 120 ℃; (e) maximum discharged energy density of the various dielectric films before and after coating achieved at above 90% charge-discharge efficiency measured at 150 ℃[93].

    图 8  (a) 芳香族聚脲、聚硫脲和聚芳醚脲的结构式; (b)砜基化聚苯醚和砜基化自具微孔聚合物的结构式

    Figure 8.  (a) Chemical structures of ArPU, ArPTU and PEEU; (b) chemical structures of SO2-PPO25, and SO2-PIM.

  • [1]

    Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar

    [2]

    Lin X R, Salari M, Arava L M R, Ajayan P M, Grinstaff M W 2016 Chem. Soc. Rev. 45 5848Google Scholar

    [3]

    Luo H, Zhou X F, Ellingford C, Zhang Y, Chen S, Zhou K C, Zhang D, Bowen C B, Wan C Y 2019 Chem. Soc. Rev. 48 4424Google Scholar

    [4]

    Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187Google Scholar

    [5]

    Yuan Q B, Yao F Z, Cheng S D, Wang L X, Wang Y F, Mi S B, Wang Q, Wang X H, Wang H 2020 Adv. Funct. Mater. 30 2000191Google Scholar

    [6]

    Li Q, Zhang G Z, Liu F H, Han K, Gadiniski M R, Xiong C X, Wang Q 2015 Energy Environ. Sci. 8 922Google Scholar

    [7]

    Li Q, Yao F Z, Liu Y, Zhang G Z, Wang H, Wang Q 2018 Ann. Rev. Mater. Res. 48 219Google Scholar

    [8]

    Watson J, Castro G 2012 Analog Dialogue 46 1

    [9]

    Tan D, Zhang L, Chen Q, Irwin P 2014 J. Electron. Mater. 43 4569Google Scholar

    [10]

    Johnson R W, Evans J L, Jacobsen P, Thompson J R, Christopher M 2004 IEEE Trans. Electron. Packag. Manuf. 27 164Google Scholar

    [11]

    Barshaw E J, White J, Chait M J, Cornette J B, Bustamante J, Folli F, Biltchick D, Borelli G, Pocco G, Rabuffi M 2007 IEEE Trans. Magn. 43 223Google Scholar

    [12]

    李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 物理学报 51 776Google Scholar

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776Google Scholar

    [13]

    Gadinski M R, Han K, Li Q, Zhang G, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981Google Scholar

    [14]

    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar

    [15]

    Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S, Zhang Q M 2009 Appl. Phys. Lett. 94 143Google Scholar

    [16]

    Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar

    [17]

    Prajapati P, Thakui V K, Gupta R 2016 Chem. Rev. 116 4260Google Scholar

    [18]

    Zhou L, Jiang Y F 2019 Mater. Sci. Technol. 36 1Google Scholar

    [19]

    Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X 2017 Adv. Mater. 29 1601727Google Scholar

    [20]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [21]

    Kojima K, Takai Y, Ieda M 1986 J. Appl. Phys. 59 2655Google Scholar

    [22]

    Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 1Google Scholar

    [23]

    Akram S, Yang Y, Zhong X, Bhutta S, Wu G N, Castellon J, Zhou K 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3505Google Scholar

    [24]

    Liu A, Zhu H H, Sun H B, Xu Y, Noh Y Y 2018 Adv. Mater. 30 1706364Google Scholar

    [25]

    Vecchio M A, Meddeb A B, Lanagan M T, Ounaies Z, Shallenberger J R 2018 J. Appl. Phys. 124 114102Google Scholar

    [26]

    Sawa A 2008 Mater. Today 11 28Google Scholar

    [27]

    Angle R L, Talley H E 1978 IEEE Trans. Electron Devices 25 1277Google Scholar

    [28]

    Chiu F C, Lee C Y, Pan T M 2009 J. Appl. Phys. 105 074103Google Scholar

    [29]

    Calvet L, Wheeler R, Reed M 2002 Appl. Phys. Lett. 80 1761Google Scholar

    [30]

    Chiu F C 2006 J. Appl. Phys. 100 114102Google Scholar

    [31]

    Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843Google Scholar

    [32]

    Laghari J R, Sarjeant W J 1992 IEEE Trans. Power Electron. 7 251Google Scholar

    [33]

    Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Mater. 30 1704380Google Scholar

    [34]

    Chi Q G, Gao Z Y, Zhang T D, Zhang C H, Zhang Y, Chen Q G, Wang X, Lei Q Q 2019 ACS Sustainable Chem. Eng. 7 748Google Scholar

    [35]

    Tong H, Fu J, Ahmad A, Fan T, Hou Y D, Xu J 2019 Macromol. Mater. Eng. 304 1800709Google Scholar

    [36]

    James J C 1986 Polym. Compos. 7 158Google Scholar

    [37]

    Ho J S, Greenbaum S G 2018 ACS Appl. Mater. Interfaces 10 29189Google Scholar

    [38]

    Mannodi-Kanakkithodi A, Treich G M, Huan T D, Ma R, Tefferi M, Cao Y, Sotzing G A, Ramprasad R 2016 Adv. Mater. 28 6277Google Scholar

    [39]

    Klein R J, Barber P, Chance W M, Loye H C Z 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1234Google Scholar

    [40]

    Diaham S, Saysouk F, Locatelli M L, Lebey T 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2795Google Scholar

    [41]

    Chi Q G, Dong J F, Zhang C H, Wong C P, Wang X, Lei Q Q 2016 J. Mater. Chem. C 4 8179Google Scholar

    [42]

    Wang S, Huang X Y, Wang G Y, Wang Y, He J L, Jiang P K 2015 J. Phys. Chem. C 119 25307Google Scholar

    [43]

    冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲 2016 物理学报 65 188101Google Scholar

    Feng Q, Li M K, Tang H T, Wang X D, Gao Z M, Meng F L 2016 Acta Phys. Sin. 65 188101Google Scholar

    [44]

    Pan Z B, Yao L M, Ge G L, Shen B, Zhai J W 2018 J. Mater. Chem. A 6 14614Google Scholar

    [45]

    Zou K L, Dan Y, Yu Y X, Zhang Y, Zhang Q F, Lu Y M, Huang H T, Zhang X, He Y B 2019 J. Mater. Chem. A 7 13473Google Scholar

    [46]

    Feng Y, Zhou Y H, Zhang T D, Zhang C H, Zhang Y Q, Zhang Y, Chen Q G, Chi Q G 2020 Energy Storage Mater. 25 180Google Scholar

    [47]

    Yu K, Wang H, Zhou Y C, Bai Y Y, Niu Y J 2013 J. Appl. Phys. 113 034105Google Scholar

    [48]

    Yu K, Niu Y J, Xiang F, Zhou Y C, Bai Y Y, Wang H 2013 J. Appl. Phys. 114 174107Google Scholar

    [49]

    Wu Y H, Zha J W, Yao Z Q, Sun F, Li R K Y, Dang Z M 2015 RSC Adv. 9 44749Google Scholar

    [50]

    Huang X Y, Jiang P K 2015 Adv. Mater. 27 546Google Scholar

    [51]

    Hu P H, Sun W D, Fan M Z, et al. 2018 Appl. Surf. Sci. 458 743Google Scholar

    [52]

    Sun W D, Lu X J, Jiang J Y, Zhang X, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2017 J. Appl. Phys. 121 244101Google Scholar

    [53]

    Shen Z H, Wang J J, Jiang J Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Energy Mater. 8 1800509Google Scholar

    [54]

    Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1901826Google Scholar

    [55]

    Li Y S, Zhou Y, Zhu Y J, Cheng S, Yuan C, Hu J, He J L, Li Q 2020 J. Mater. Chem. A 8 6576Google Scholar

    [56]

    Wu L Y, Wu K, Liu D Y, Huang R, Huo J L, Chen F, Fu Q 2018 J. Mater. Chem. A 6 7573Google Scholar

    [57]

    Wu L Y, Wu K, Lei C X, Liu D Y, Du R N, Chen F, Fu Q 2019 J. Mater. Chem. A 7 7664Google Scholar

    [58]

    Liu F H, Li Q, Li Z Y, Liu Y, Dong L J, Xiong C X, Wang Q 2017 Compos. Sci. Technol. 142 139Google Scholar

    [59]

    Ai D, Li H, Zhou Y, et al. 2020 Adv. Energy Mater. 10 1903881Google Scholar

    [60]

    Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar

    [61]

    Li H, Ren L L, Ai D, Han Z B, Liu Y, Yao B, Wang Q 2020 InfoMat. 2 389Google Scholar

    [62]

    Thakur Y, Zhang T, Iacob C, Yang T N, Bernholc J, Chen L Q, Runt J, Zhang Q M 2017 Nanoscale 9 10992Google Scholar

    [63]

    Chadband W G 1992 IEE Rev. 38 404Google Scholar

    [64]

    Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M 2020 Sci. Adv. 6 6622Google Scholar

    [65]

    Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905Google Scholar

    [66]

    Bouharrasa F E, Raihane M, Ameduri B 2020 Prog. Mater. Sci. 113 100670Google Scholar

    [67]

    Niu Y J, Xiang F, Wang Y F, Chen J, Wang H 2018 Phys. Chem. Chem. Phys. 20 6598Google Scholar

    [68]

    Niu Y J, Wang H 2019 ACS Appl. Nano Mater. 2 627Google Scholar

    [69]

    Zhang X, Li B W, Dong L J, Liu H X, Chen W, Shen Y, Nan C W 2018 Adv. Mater. Interfaces 5 1800096Google Scholar

    [70]

    Pan Z B, Yao L M, Zhai J W, Yao X, Chen H 2018 Adv. Mater. 30 1705662Google Scholar

    [71]

    Rahimabady M, Mirshekarloo M S, Yao K, Lu L 2013 Phys. Chem. Chem. Phys. 15 16242Google Scholar

    [72]

    Liu S, Xue S X, Shen B, Zhai J W 2015 Appl. Phys. Lett. 107 032907Google Scholar

    [73]

    Choudhury A 2012 Polym. Int. 61 696Google Scholar

    [74]

    Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou K C 2015 ACS Appl. Mater. Interfaces 7 8061Google Scholar

    [75]

    Liu J, Shen Z H, Xu W H, Zhang Y, Qian X S, Jiang Z H, Zhang Y H 2020 Small 2000714Google Scholar

    [76]

    Xu W H, Liu J, Chen T W, Jiang X Y, Qian X S, Zhang Y, Jiang Z H, Zhang Y H 2019 Small 15 1901582Google Scholar

    [77]

    Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020 Energy Storage Mater. 28 255Google Scholar

    [78]

    Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658Google Scholar

    [79]

    Wang Y F, Wang L X, Yuan Q B, et al. 2018 Nano Energy 44 364Google Scholar

    [80]

    Chen J, Wang Y F, Yuan Q B, Xu X W, Niu Y J, Wang Q, Wang H 2018 Nano Energy 54 288Google Scholar

    [81]

    Jiang J Y, Shen Z H, Qian J, Dan Z, Guo M, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [82]

    Chen J, Wang Y F, Xu X W, Yuan Q B, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. A 7 3729Google Scholar

    [83]

    Wang Y F, Chen J. Li Y, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. A 7 2965Google Scholar

    [84]

    Chen X Y, Tseng J K, Treufeld I, Mackey M, Schuele D E, Li R P, Fukuto M, Baer E, Zhu L 2017 J. Mater. Chem. C 5 10417Google Scholar

    [85]

    Li Z P, Chen X Y, Zhang C, Baer E, Langhe D, Ponting Ml, Brubaker M, Hosking T, Li R P, Fukuto M, Zhu L 2019 ACS Appl. Polym. Mater. 1 867Google Scholar

    [86]

    Tewari P, Rajagopalan R, Furman E, Lanagan M T 2010 Langmuir 26 18817Google Scholar

    [87]

    Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W 2014 Adv. Funct. Mater. 24 3172Google Scholar

    [88]

    Pan Z B, Liu B H, Zhai J W, Yao L M, Yang K, Shen B 2017 Nano Energy 40 587Google Scholar

    [89]

    Tseng J K, Tang S, Zhou Z, Mackey M, Carr J M, Mu R, Flandin L, Schuele D E, Baer E, Zhu L 2014 Polymer 55 8Google Scholar

    [90]

    Mackey M, Hiltner A, Baer E, Flandin L, Wolak M A, Shirk J S 2009 J. Phys. D: Appl. Phys. 42 175304Google Scholar

    [91]

    Li Q, Liu F H, Yang T N, Gadinski M R, Zhang G Z, Chen L Q, Wang Q 2016 Proc. Natl. Acad. Sci. U.S.A. 113 9995Google Scholar

    [92]

    Azizi A, Gadinski M R, Li Q, AlSaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [93]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [94]

    Bonardd S, Moreno-Serna V, Kortaberria G, Díaz D D, Leiva A, Saldías C 2019 Polymer 11 317Google Scholar

    [95]

    Peng X W, Wu Q, Jiang S H, Hanif M, Chen S L, Hou H Q 2014 J. Appl. Polym. Sci. 131 40828Google Scholar

    [96]

    Zhuang Y B, Seong J G, Lee Y M 2019 Prog. Polym. Sci. 92 35Google Scholar

    [97]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego: Academic Press) p573

    [98]

    Wang Y, Zhou X, Lin M R, Zhang Q M 2009 Appl. Phys. Lett. 94 154Google Scholar

    [99]

    Cheng Z X, Lin M R, Wu S, Thakur Y, Zhou Y, Jeong D Y, Shen Q D, Zhang Q M 2015 Appl. Phys. Lett. 106 202902Google Scholar

    [100]

    Wu S, Li W P, Lin M R, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang Q M 2013 Adv. Mater. 25 1734Google Scholar

    [101]

    Qiao Y L, Islam M S, Yin X D, Han K, Yan Y, Zhang J Y, Wang Q, Ploehn H J, Tang C B 2015 Polymer 72 428Google Scholar

    [102]

    Yuan X P, Matsuyama Y, Chung T C M 2010 Macromolecules 43 4011Google Scholar

    [103]

    Misra M, Agarwal M, Sinkovits D W, Kumar S K, Wang C C, Pilania G, Ramprasad R, Weiss R A, Yuan X P, Mike Chung T C 2014 Macromolecules 47 1122Google Scholar

    [104]

    Zhang M, Zhang L, Zhu M, Wang Y G, Li N W, Zhang Z J, Chen Q, An L N, Lin Y H, Nan C W 2016 J. Mater. Chem. A 4 4797Google Scholar

    [105]

    Chou Y H, Yen H J, Tsai C L, Lee W Y, Liou G S, Chen W C 2013 J. Mater. Chem. C 1 3235Google Scholar

    [106]

    Treufeld I, Wang D H, Kurish B A, Tan L S 2014 J. Mater. Chem. A 2 20683Google Scholar

    [107]

    Zhang Z B, Wang D H, Litt M H, Tan L S, Zhu L 2018 Angew. Chem. Int. Ed. 130 1547Google Scholar

    [108]

    Zhang Z B, Zheng J F, Premasiri K, Kwok M H, Li Q, Li R P, Zhang S B, Litt M H, Gao X P A, Zhu L 2020 Mater. Horiz. 7 592Google Scholar

    [109]

    Yang R Q, Wei R B, Li K, Tong L F, Jia K, Liu X B 2016 Sci. Rep. 6 36434Google Scholar

    [110]

    Yang J, Yang X L, Zou Y K, Zhan Y Q, Zhao R, Liu X B 2012 J. Appl. Polym. Sci. 126 1129Google Scholar

    [111]

    Hanley T L, Burford R P, Fleming R J, Barber K W 2003 IEEE Electr. Insul. Mag. 19 13Google Scholar

    [112]

    Zhou Q, Ma J, Dong S, Li X, Cui G 2019 Adv. Mater. 31 1902029Google Scholar

    [113]

    Khanchaitit P, Han K, Gadinski M R, Li Q, Wang Q 2013 Nat. Commun. 4 2845Google Scholar

    [114]

    Meereboer N L, Terzić I, van der Steeg P, Portale G, Loos K 2019 J. Mater. Chem. A 7 2795Google Scholar

    [115]

    Chen X Z, Li Z W, Cheng Z X, Zhang J Z, Shen Q D, Ge H X, Li H T 2011 Macromol. Rapid Commun. 32 94Google Scholar

    [116]

    Tan S, Hu X, Ding S, Zhang Z, Li H, Yang L 2013 J. Mater. Chem. A 1 10353Google Scholar

    [117]

    Li H, Gadinski M R, Huang Y Q, et al. 2020 Energy Environ. Sci. 13 1279Google Scholar

    [118]

    Chen S Y, Meng G D, Kong B, Xiao B, Wang Z D, Jing Z, Gao Y S, Wu G L, Wang H, Cheng Y H 2020 Chem. Eng. J. 387 123662Google Scholar

    [119]

    Wang Y X, Huang X Y, Li T, Wang Z W, Li L Q, Gu X J, Jiang P K 2017 J. Mater. Chem. A 5 20737Google Scholar

    [120]

    Hung C C, Wu H C, Chiu Y C, Tung S H, Chen W C 2016 J. Polym. Sci. Polym. Chem. 54 3224Google Scholar

  • [1] Wang Wei, Li Jin-Yang, Mao Guo-Pei, Yang Yan, Gao Zhi-Qiang, Ma Cong, Zhong Xiang-Yu, Shi Qing. Optical fiber high-temperature pressure sensor with weak temperature sensitivity. Acta Physica Sinica, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [2] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [3] Pan Peng-Hui, Ji Peng-Fei, Lin Gen, Dong Xi-Ming, Zhao Jin-Hui. Theoretical and experimental research of femtosecond laser processing fused silica. Acta Physica Sinica, 2022, 71(24): 247901. doi: 10.7498/aps.71.20221496
    [4] Li Ming-Zhu, Cai Xiao-Wu, Zeng Chuan-Bin, Li Xiao-Jing, Li Duo-Li, Ni Tao, Wang Juan-Juan, Han Zheng-Sheng, Zhao Fa-Zhan. Effect of high-temperature on holding characteristics in MOSFET ESD protecting device. Acta Physica Sinica, 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [5] Li Zhi-Qiang, Tan Xiao-Yu, Duan Xin-Lei, Zhang Jing-Yi, Yang Jia-Yue. Deep learning molecular dynamics simulation on microwave high-temperature dielectric function of silicon nitride. Acta Physica Sinica, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [6] Wang Yan-Bin, Liu Qian, Wang Yong, Dai Bo, Wei Xian-Hua. Effects of electrode materials and bias polarities on breakdown behaviors of oxide dielectrics and their mechanisms. Acta Physica Sinica, 2021, 70(8): 087302. doi: 10.7498/aps.70.20201262
    [7] Shen Zhong-Hui, Jiang Yan-Da, Li Bao-Wen, Zhang Xin. Reseach progress of ferroelectric polymer nanocomposites with high energy storage density. Acta Physica Sinica, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [8] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [9] Zhang Xing, Zhang Yi, Zhang Jian-Wei, Zhang Jian, Zhong Chu-Yu, Huang You-Wen, Ning Yong-Qiang, Gu Si-Hong, Wang Li-Jun. 894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system. Acta Physica Sinica, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [10] Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao. Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature. Acta Physica Sinica, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [11] Han Yong, Long Xin-Ping, Guo Xiang-Li. Prediction of methane PVT relations at high temperatures by a simplified virial equation of state. Acta Physica Sinica, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [12] Song Yun-Fei, Yu Guo-Yang, Yin He-Dong, Zhang Ming-Fu, Liu Yu-Qiang, Yang Yan-Qiang. Temperature dependence of elastic modulus of single crystal sapphire investigated by laser ultrasonic. Acta Physica Sinica, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [13] Bi Xue-Song, Zhu Liang, Yang Fu-Long. Mechanism of current injection in the process of wire electrical explosion. Acta Physica Sinica, 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [14] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [15] Fan Zhen-Jun, Geng Xue-Wen, Kong Wen-Jie, Jin Yi-Rong. Measurement of anisotropy thermopower of decagonal AlCuCo quasicrystal. Acta Physica Sinica, 2009, 58(10): 7119-7123. doi: 10.7498/aps.58.7119
    [16] Chen Xue-Feng, Li Hua-Mei, Li Dong-Jie, Cao Fei, Dong Xian-Lin. Study on slim-loop ferroelectric ceramics for high-power pulse capacitors. Acta Physica Sinica, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [17] Song Xiao-Shu, Cheng Xin-Lu, Yang Xiang-Dong, Linghu Rong-Feng. Line intensities of 3000—0200 and 1001—0110 transition bands of 14N216O at high temperature. Acta Physica Sinica, 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [18] Li Gong-Ping, Zhang Mei-Ling. Energetics and structures of high-temperature copper cluster studied by Monte Carlo method. Acta Physica Sinica, 2005, 54(6): 2873-2876. doi: 10.7498/aps.54.2873
    [19] Li Ling, Li Bo-Zang. The energy density in a one-dimensional cavity with two moving boundaries. Acta Physica Sinica, 2003, 52(11): 2762-2767. doi: 10.7498/aps.52.2762
    [20] TANG LI-JIA, CAI XI-JIE, LIN ZUN-QI. CONTROL OF PULSE SHAPE IN “SHENGGUANG II” MAIN AMPLIFERS. Acta Physica Sinica, 2001, 50(6): 1075-1079. doi: 10.7498/aps.50.1075
Metrics
  • Abstract views:  13926
  • PDF Downloads:  643
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2020
  • Accepted Date:  24 July 2020
  • Available Online:  02 November 2020
  • Published Online:  05 November 2020

/

返回文章
返回