Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development and applications of schlieren system for measuring characteristics of supersonic molecular beam

Yin Jiao Xiao Guo-Liang Chen Cheng-Yuan Feng Bei-Bin Zhang Yi-Po Zhong Wu-Lü

Citation:

Development and applications of schlieren system for measuring characteristics of supersonic molecular beam

Yin Jiao, Xiao Guo-Liang, Chen Cheng-Yuan, Feng Bei-Bin, Zhang Yi-Po, Zhong Wu-Lü
PDF
HTML
Get Citation
  • Supersonic molecular beam injection (SMBI) is an effective fueling method for the magnetic fusion plasmas. The fueling method was first proposed in the HL-1 tokamak, and now has been applied to several tokamaks and stellarators. Pulsed molecular beam passes from a Laval type nozzle and has a high instantaneous intensity, high directionality and deep deposition in the plasma. The fueling efficiency is higher than the gas puffing efficiency. In addition, it is widely used for controlling plasma density and investigating plasma physics. To further improve the fueling capability in future fusion devices, it is highly desirable to optimize the characteristic of the SMB and further investigate the interactions between the molecular beam and the plasma. In this paper, a schlieren diagnostic system is developed to measure the parameters of molecular beam, and the testing application is performed. The schlieren system, which is based on the schlieren photography, is designed with the zigzag optical path and equipped on the SMBI testing platform to measure the characteristics of the supersonic molecular beam. In order to verify the effectiveness of the system, a series of tests is carried out with different nozzle shapes under atmospheric and vacuum conditions. The beam profiles of CO2 and D2 under different background pressures are obtained. The testing results indicate that the directionality of the integrated Laval nozzle is much better than that of the pinhole nozzle. The schlieren system provides a testing tool for optimizing the supersonic molecular beam.
      Corresponding author: Zhong Wu-Lü, zhongwl@swip.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFE0301106), the Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11922503), and the Scientific Research Program for Young Talents of China National Nuclear Corporation
    [1]

    Yao L H, Tang N Y, Cui Z Y, et al. 1998 Nucl. Fusion 38 631Google Scholar

    [2]

    Yu D L, Chen C Y, Yao L H, et al. 2012 Nucl. Fusion 52 082001Google Scholar

    [3]

    Zheng X W, Li J G, Hu J S, et al. 2013 Plasma Phys. Controlled. Fusion 55 115010Google Scholar

    [4]

    Chen C Y, Yu D L, Feng B B, et al. 2016 Rev. Sci. Instrum. 87 093503Google Scholar

    [5]

    Xiao W W, Zou X L, Ding X T, et al. 2010 Phys. Rev. Lett. 104 215001Google Scholar

    [6]

    Sun H J, Ding X T, Yao L H, et al. 2010 Plasma Phys. Controlled Fusion 52 045003Google Scholar

    [7]

    Duan X R, Dong J Q, Yan L W, et al. 2010 Nucl. Fusion 50 095011Google Scholar

    [8]

    Zhong W L, Zou X L, Liang A S, et al. 2020 Nucl. Fusion 60 082002Google Scholar

    [9]

    Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar

    [10]

    Zhong W L, Zou X L, Feng B B, et al. 2019 Nucl. Fusion 59 076033Google Scholar

    [11]

    Duan X R, Liu Y, Xu M, et al. 2017 Nucl. Fusion 57 102013Google Scholar

    [12]

    Huang D W, Chen Z Y, Tong R H, et al. 2017 Plasma Phys. Controlled Fusion 59 085002Google Scholar

    [13]

    Baldzuhn J, Yao L H, W7-AS Team 2003 30th EPS Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia, July 7−11, 2003 p4.166pd

    [14]

    Pégourié B, Tsitrone E, Dejarnac R, et al. 2003 J. Nucl. Mater. 313 539Google Scholar

    [15]

    Kwak J G, Oh Y K, Yang H L, et al. 2013 Nucl. Fusion 53 104005Google Scholar

    [16]

    Takenaga H, Miyo Y, Bucalossi J, et al. 2010 Nucl. Fusion 50 115003Google Scholar

    [17]

    Xiao J S, Yang Z J, Zhuang G, et al. 2014 Plasma Sci. Technol. l 16Google Scholar

    [18]

    冯北滨, 肖国梁, 陈程远, 等 2019 CFETR集成工程设计年会暨聚变堆设计研讨会 中国黄山, 2019年 9月24日, 第1−53页

    Feng B B, Xiao G L, Chen C Y, et al. 2019 Annual Meeting of CFETR Integrated Design & Fusion Reactor Design Workshop, Huangshan, China, September 24, 2019 pp1−53 (in Chinese)

    [19]

    冯北滨, 肖国梁, 陈程远, 等 2019年第一届中国磁约束聚变能大会暨聚变能活动周 中国乐山, 2019年11月25日 EX(P)-19

    Feng B B, Xiao G L, Chen C Y, et al. 2019 1st Chinese Fusion Energy Conference, Leshan, China, November 25, 2019 EX(P)-19 (in Chinese)

    [20]

    塞特尔 G S著 (叶继飞, 文明, 徐徐等译) 2001 纹影与阴影技术 (北京: 国防工业出版社) 第25−28页

    Settles G S (translated by Ye J F, Wen M, Xu X, et al.) 2001 Schlieren and Shadowgraph Techniques-Visualizing Phenomena in Transparent Media (Beijing: National Defense Industry Press) pp25−28 (in Chinese)

    [21]

    冯天植, 刘成民, 赵润祥, 等 1994 弹道学报 6 89

    Feng T Z, Liu C M, Zhao R X, et al. 1994 J. Ballistics 6 89

    [22]

    叶继飞, 金燕, 吴文堂, 等 2011 实验流体力学 25 94Google Scholar

    Ye J F, Jin Y, Wu W T, et al. 2011 J. Exp. Fluid Mech. 25 94Google Scholar

    [23]

    Yao L H, Zhou Y, Cao J Y, et al. 2001 Nucl. Fusion 41 817Google Scholar

    [24]

    李华, 杨臧健, 吴敏, 等 2011 实验流体力学 25 91Google Scholar

    Li H, Yang Z J, Wu M, et al. 2011 J. Exp. Fluid Mech. 25 91Google Scholar

  • 图 1  纹影系统示意图

    Figure 1.  A diagram of the schlieren system.

    图 2  (a)光源狭缝系统; (b)狭缝机构; (c)不同类型狭缝示意图

    Figure 2.  (a) Light source and slit system; (b) slit mechanism; (c) diagram of different types of slits.

    图 3  (a)刀口实物图; (b)高速相机实物图

    Figure 3.  (a) Image of the cutter; (b) image of the high-speed camera

    图 4  超声分子束注入测试平台 (a1)锥形一体式喷嘴剖面图; (a2)圆孔喷嘴剖面图

    Figure 4.  SMBI testing platform: (a1) cross-section of the integrated conical nozzle; (a2) cross-section of the nozzle with a pinhole.

    图 5  刀口在(a)焦点前、(b)焦点上、(c)焦点后位置处的纹影图

    Figure 5.  Schlieren images for the cutter point located (a) in front of the focus, (b) at the focus and (c) behind the focus.

    图 6  (a) SMBI束流轮廓纹影图(M为马赫数); (b) 超声束流理论示意图

    Figure 6.  (a) The measured schlieren image of SMBI beam (M is Mach number); (b) a theoretical diagram of supersonic beam.

    图 7  (a) D2和(b) CO2气体在圆孔喷嘴出口处的纹影图, 背景压强为105 Pa

    Figure 7.  Schlieren images of (a) D2 and (b) CO2 gas with a pinhole nozzle under the atmospheric condition.

    图 8  (a) D2和(b) CO2气体在锥形一体式喷嘴出口处的纹影图, 背景压强为105 Pa

    Figure 8.  Schlieren images of (a) D2 and (b) CO2 gas with integrated conical nozzle under the atmospheric condition.

    图 9  CO2气体在不同直径的圆孔喷嘴出口处的纹影轮廓图(背景压强为105 Pa) (a) 0.5 mm; (b) 0.25 mm

    Figure 9.  Schlieren images of CO2 gas with nozzles of different pinholes under the atmospheric condition: (a) 0.5 mm; (b) 0.25 mm.

    图 10  CO2气体在不同喷嘴出口处的纹影轮廓图(背景压强为5 × 102 Pa) (a) 0.25 mm 圆形喷嘴; (b) 0.25 mm 锥形一体式喷嘴

    Figure 10.  Schlieren images of CO2 gas with different nozzles under the vacuum condition (5 × 102 Pa): (a) A pinhole nozzle with a diameter of 0.25 mm; (b) integrated conical nozzle with a diameter of 0.25 mm.

    表 1  主要系统元件参数

    Table 1.  Parameters of main components.

    元件名称详细参数
    光源彩色LED, 中心波长532 nm, 功率250 W
    且连续可调, 带聚焦透镜及风冷
    狭缝圆孔, 直径小于3 mm可调节, 边缘锐利
    无毛刺
    球面反
    射镜1,2
    有效通光口径ϕ150 mm, 焦距2.5 m, 边缘
    厚度60 mm, 面型精度1/4波长
    小反射镜1,2有效通光口径ϕ50 mm
    平面转折镜有效通光口径ϕ215 mm, 面型精度1/8波长
    观察窗1,2有效通光口径ϕ150 mm, 材质K9, 厚度20 mm
    刀口开启宽度5 mm, 步进精度0.01 mm
    装调结构中心高度1.1 m, 升降调节精度 ±100 mm
    DownLoad: CSV
  • [1]

    Yao L H, Tang N Y, Cui Z Y, et al. 1998 Nucl. Fusion 38 631Google Scholar

    [2]

    Yu D L, Chen C Y, Yao L H, et al. 2012 Nucl. Fusion 52 082001Google Scholar

    [3]

    Zheng X W, Li J G, Hu J S, et al. 2013 Plasma Phys. Controlled. Fusion 55 115010Google Scholar

    [4]

    Chen C Y, Yu D L, Feng B B, et al. 2016 Rev. Sci. Instrum. 87 093503Google Scholar

    [5]

    Xiao W W, Zou X L, Ding X T, et al. 2010 Phys. Rev. Lett. 104 215001Google Scholar

    [6]

    Sun H J, Ding X T, Yao L H, et al. 2010 Plasma Phys. Controlled Fusion 52 045003Google Scholar

    [7]

    Duan X R, Dong J Q, Yan L W, et al. 2010 Nucl. Fusion 50 095011Google Scholar

    [8]

    Zhong W L, Zou X L, Liang A S, et al. 2020 Nucl. Fusion 60 082002Google Scholar

    [9]

    Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar

    [10]

    Zhong W L, Zou X L, Feng B B, et al. 2019 Nucl. Fusion 59 076033Google Scholar

    [11]

    Duan X R, Liu Y, Xu M, et al. 2017 Nucl. Fusion 57 102013Google Scholar

    [12]

    Huang D W, Chen Z Y, Tong R H, et al. 2017 Plasma Phys. Controlled Fusion 59 085002Google Scholar

    [13]

    Baldzuhn J, Yao L H, W7-AS Team 2003 30th EPS Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia, July 7−11, 2003 p4.166pd

    [14]

    Pégourié B, Tsitrone E, Dejarnac R, et al. 2003 J. Nucl. Mater. 313 539Google Scholar

    [15]

    Kwak J G, Oh Y K, Yang H L, et al. 2013 Nucl. Fusion 53 104005Google Scholar

    [16]

    Takenaga H, Miyo Y, Bucalossi J, et al. 2010 Nucl. Fusion 50 115003Google Scholar

    [17]

    Xiao J S, Yang Z J, Zhuang G, et al. 2014 Plasma Sci. Technol. l 16Google Scholar

    [18]

    冯北滨, 肖国梁, 陈程远, 等 2019 CFETR集成工程设计年会暨聚变堆设计研讨会 中国黄山, 2019年 9月24日, 第1−53页

    Feng B B, Xiao G L, Chen C Y, et al. 2019 Annual Meeting of CFETR Integrated Design & Fusion Reactor Design Workshop, Huangshan, China, September 24, 2019 pp1−53 (in Chinese)

    [19]

    冯北滨, 肖国梁, 陈程远, 等 2019年第一届中国磁约束聚变能大会暨聚变能活动周 中国乐山, 2019年11月25日 EX(P)-19

    Feng B B, Xiao G L, Chen C Y, et al. 2019 1st Chinese Fusion Energy Conference, Leshan, China, November 25, 2019 EX(P)-19 (in Chinese)

    [20]

    塞特尔 G S著 (叶继飞, 文明, 徐徐等译) 2001 纹影与阴影技术 (北京: 国防工业出版社) 第25−28页

    Settles G S (translated by Ye J F, Wen M, Xu X, et al.) 2001 Schlieren and Shadowgraph Techniques-Visualizing Phenomena in Transparent Media (Beijing: National Defense Industry Press) pp25−28 (in Chinese)

    [21]

    冯天植, 刘成民, 赵润祥, 等 1994 弹道学报 6 89

    Feng T Z, Liu C M, Zhao R X, et al. 1994 J. Ballistics 6 89

    [22]

    叶继飞, 金燕, 吴文堂, 等 2011 实验流体力学 25 94Google Scholar

    Ye J F, Jin Y, Wu W T, et al. 2011 J. Exp. Fluid Mech. 25 94Google Scholar

    [23]

    Yao L H, Zhou Y, Cao J Y, et al. 2001 Nucl. Fusion 41 817Google Scholar

    [24]

    李华, 杨臧健, 吴敏, 等 2011 实验流体力学 25 91Google Scholar

    Li H, Yang Z J, Wu M, et al. 2011 J. Exp. Fluid Mech. 25 91Google Scholar

  • [1] Dong Xu, Huang Yong-Sheng, Tang Guang-Yi, Chen Shan-Hong, Si Mei-Yu, Zhang Jian-Yong. Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering. Acta Physica Sinica, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [2] Zhou Mao-Lei, Liu Dong, Qu Guo-Feng, Chen Zhi-Yuan, Li Min, Wang Yi-Zhou, Xu Zi-Xu, Han Ji-Feng. Experimental study on velocity of supersonic molecular beam based on microphone. Acta Physica Sinica, 2019, 68(16): 164702. doi: 10.7498/aps.68.20190436
    [3] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Erratum: Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [4] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [5] Wu Xue-Ke, Sun Xiao-Qin, Liu Yin-Xue, Li Hui-Dong, Zhou Yu-Lin, Wang Zhan-Hui, Feng Hao. Effects of width and density of supersonic molecule beam on penetration depth of tokamak. Acta Physica Sinica, 2017, 66(19): 195201. doi: 10.7498/aps.66.195201
    [6] Ding Hong-Bing, Wang Chao, Zhao Ya-Kun. Analytical calculation and evolutionary regression method for isentropic exponent of hydrogen gas at the throat of critical nozzle. Acta Physica Sinica, 2014, 63(16): 164701. doi: 10.7498/aps.63.164701
    [7] Bai Xian-Chen, Yang Jian-Hua, Zhang Jian-De, Jin Zhen-Xing. Influences of the multiple electron overtaking on the bunching process of the wide-gap klystron amplifier under high power injection condition. Acta Physica Sinica, 2013, 62(5): 058402. doi: 10.7498/aps.62.058402
    [8] Zheng Xing-Wei, Li Jian-Gang, Hu Jian-Sheng, Li Jia-Hong, Cao Bin, Wu Jin-Hua. Investgation of gas puffing and supersonic molecular beam injection density feedback expriments on EAST. Acta Physica Sinica, 2013, 62(15): 155202. doi: 10.7498/aps.62.155202
    [9] Feng Bei-Bin, Yao Liang-Hua, Chen Cheng-Yuan, Ji Xiao-Quan, Zhong Wu-Lü, Shi Zhong-Bing, Yu De-Liang, Cui Zheng-Ying, Song Xian-Ming, Duan Xu-Ru. Experimental study of L-H transition triggered by supersonic molecular beam injection in the HL-2A tokamak. Acta Physica Sinica, 2013, 62(1): 015203. doi: 10.7498/aps.62.015203
    [10] Xia Hai-Hong, Zhang Zhong-Bing, Liu Lin-Yue, Ouyang Xiao-Ping, Chen Liang, Wang Qun-Shu, Wang Lan, Ma Yan-Liang, Pan Hong-Bo. Accurate measurements of high energy proton beam by secondary electron compensation. Acta Physica Sinica, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [11] Jiao Yi-Ming, Yao Liang-Hua, Feng Bei-Bin, Chen Cheng-Yuan, Zhou Yan, Shi Zhong-Bing, Dong Jia-Qi, Duan Xu-Ru. Impact of injecting positions on penetration and deposition of supersonic molecular beam on Tokamak. Acta Physica Sinica, 2010, 59(10): 7191-7197. doi: 10.7498/aps.59.7191
    [12] Yao Liang-Hua, Feng Bei-Bin, Chen Cheng-Yuan, Feng Zhen, Li Wei, Jiao Yi-Ming. Recent results of SMBI on the HL-2A tokamak with divertor configuration. Acta Physica Sinica, 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [13] Shi Zhong-Bing, Yao Liang-Hua, Ding Xuan-Tong, Duan Xu-Ru, Feng Bei-Bin, Liu Ze-Tian, Xiao Wei-Wen, Sun Hong-Juan, Li Xu, Li Wei, Chen Cheng-Yuan, Jiao Yi-Ming. Experimental study of injection depth and fuelling effects during supersonic molecular beam injection on the HL-2A tokamak. Acta Physica Sinica, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [14] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [15] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [16] Jiao Yi-Ming, Zhou Yan, Yao Liang-Hua, Dong Jia-Qi. Penetration and attenuation of SMB fueling in tokamak plasma. Acta Physica Sinica, 2004, 53(4): 1123-1128. doi: 10.7498/aps.53.1123
    [17] Yao Liang-Ye, Feng Bei-Bin, Feng Zhen, Dong Jia-Fu, Li Wen-Zhong, Xu De-Ming, Hong Wen-Yu. . Acta Physica Sinica, 2002, 51(3): 596-602. doi: 10.7498/aps.51.596
    [18] Dong Jia-Fu, Tang Nian-Yi, Li Wei, Luo Jun-Lin, Guo Gan-Cheng, Zhong Yun-Ze, Liu Yi, Fu Bing-Zhong, Yao Liang-Ye, Feng Bin-Bin, Qin Yun-Wen. . Acta Physica Sinica, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [19] YANG YU, XIA GUAN-QUN, ZHAO GUO-QING, WANG XUN. Si+ ION IMPLANTATION INFLUENCE ON PHOTOLUMINESCENCE IN Si1-xGex/Si QUANTUM WELLS GROWN BY MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1998, 47(6): 978-984. doi: 10.7498/aps.47.978
    [20] HE YUAN-JIN, HU YONG, DAI LUN. AN IN-LINE ANALYSIS SYSTEM OF SLOW POSITRON BEAM FOR MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1992, 41(3): 517-522. doi: 10.7498/aps.41.517
Metrics
  • Abstract views:  5170
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2020
  • Accepted Date:  25 September 2020
  • Available Online:  27 October 2020
  • Published Online:  05 November 2020

/

返回文章
返回