Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal-structural coupling analysis of beam screen in super proton-proton collider

Fan Jia-Kun Wang Jie Gao Yong You Zhi-Ming Wang Sheng Zhang Jing Hu Yao-Cheng Xu Zhang-Lian Wang Bin

Citation:

Thermal-structural coupling analysis of beam screen in super proton-proton collider

Fan Jia-Kun, Wang Jie, Gao Yong, You Zhi-Ming, Wang Sheng, Zhang Jing, Hu Yao-Cheng, Xu Zhang-Lian, Wang Bin
PDF
HTML
Get Citation
  • High-energy colliders play an indispensable role in particle physics and high-energy physics. Beam screen is one of the key parts in the high-energy collider. It is used to transfer the heat generated by the beam in the pipeline to a cooling system, and absorb the residual gas to the cold bore through the pumping holes on the wall of the beam screen to ensure the vacuum stability at the same time. However, in the process of transferring thermal load, the deformation caused by temperature change will affect the structural stability of the beam screen. How to reduce the deformation as much as possible while ensuring the good heat transfer performance of the beam screen is one of the key issues in optimizing the structural design of the beam screen. In this paper, the heat transfer performance and mechanical property of the beam screen model are simulated and optimized based on the ANSYS simulation results to ensure the normal and stable operation of the beam in the super proton-proton collider. For the inner surface of the outer screen of the beam screen, the method of reducing the thickness of the copper coating is used to reduce the Lorentz force generated during operation. The calculation results from the relevant theoretical models show that when the thickness of the copper coating varies from 0 to 100 μm, the copper coating with a thickness of 75 μm can reduce the maximum deformation of the outer screen of the beam screen by 70.9%, while the maximum temperature of the beam screen can be increased by 1.1%. For the inner screen of the beam screen, a design scheme in which supporting ribs are arranged at intervals is used to reinforce the structure and improve the overall structural stability of the beam screen. The calculation results show that the maximum deformation of the inner screen of the beam screen can be reduced by 86.8% and the maximum temperature of the beam screen is reduced by 7.69%, compared with the case without supporting fins, when the interval between two adjacent supporting fins is 1 pumping hole. The research results provide important theoretical reference for the design of beam screen, which is the key component of the vacuum system of the new-generation high energy particle accelerator.
      Corresponding author: Wang Jie, wangjie1@xjtu.edu.cn ; Wang Sheng, shengwang@xjtu.edu.cn
    • Funds: Project supported by theYoung Scientists Fund of the National Natural Science Foundation of China (Grant No. 11905170), the Fundamental Research Funds for the Central Universities (Grant No. XJH012019018), the Young Scientist Fund of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-001), the China Postdoctoral Science Foundation (Grant No. 2018M643667), the Shaanxi Provincial Postdoctoral Science Foundation, China (Grant No. 2018BSHEDZZ05), the National Natural Science Foundation of China (Grant No. 11775166), the Key Project of Intergovernmental International Sciencec and Technology Innovation Cooperation, China (Grant No. 2016YEF0128900), and the National Key Research and Development Program(Grant No. 2017YFF0104201)
    [1]

    Aad G, Abajyan T, Abbott B, Abdallah J, Khalek S A, Abdelalim A A, Abdinov O, Aben R, Abi B, Abolins M 2012 Phys. Lett. B. 716 1Google Scholar

    [2]

    Vien V V 2020 J. Phys. G: Nucl. Part. Phys. 47 055007Google Scholar

    [3]

    Alexander S, McDonough E, Pullen A, Shapiro B 2020 J. Cosmol. Astropart. Phys. 1 032

    [4]

    Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, Dragicevic M, Ero J, Del Valle A, Flechl M 2020 Eur. Phys. J. C 80 1Google Scholar

    [5]

    Group CEPC Study 2018 arXiv: 1809.00285 [ap−ph]

    [6]

    Gröbner O 2001 Vacuum 60 25Google Scholar

    [7]

    Cern 2004 LHC Design Report (Geneva, Cern, CM-B00029745[R])

    [8]

    Cruikshank P, Artoos K, Bertinelli F, Brunet J C, Calder R, Campedel C, Collins I, Dalin J M, Feral B, Grobner O 1997 Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97 CH36167) Vancouver, BC, Canada May 16, 1997 p3586

    [9]

    Zimmermann F, Guillermo Cantón G, Osborne J, Todesco E, Oide K, Bruce R, Giovannozzi M, Martinez Mirave P, Cai Y, Fartoukh S 2018 J. Phys. Conf. Ser. 1067 022009Google Scholar

    [10]

    Calder R, Gröbner O, Mathewson A, Anashin V, Dranichnikov A, Malyshev O 1996 J. Vac. Sci. Technol. A. 14 2618Google Scholar

    [11]

    Baglin V, Bregliozzi G, Lanza G, Jimenez J 2011 2nd International Particle Accelerator Conference San Sebastian, Spain, Sep 4−9, 2011 pTUPS019

    [12]

    Baglin V, Lebrun P, Tavian L, van Weelderen R 2012 24th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2012 Fukuoka, Japan, May 14−18, 2012 p006

    [13]

    Ruggiero F, Berg J, Bruning O, Caspers F, Morvillo M, D'Yachkov M 1997 Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97 CH36167) Vancouver, BC, Canada May 16, 1997 p107

    [14]

    周洪吉 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhou H J 2013 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [15]

    吴锡, 袁平, 马力祯, 张小奇, 何源, 吴巍, 姚庆高, 郭蓓蕾 2010 強激光与粒子束 22 1335Google Scholar

    Wu X, Yuan P, Ma L Z, Zhang X Q, He Y, Wu W, Yao Q G, Guo B L 2010 High Pow. Las.Part. Beam 22 1335Google Scholar

    [16]

    范佳锟, 王洁, 高勇, 游志明, 严涛, 张静, 王盛, 许章炼 2019 原子能科学技术 53 1670

    Fan J K, Wang J, Gao Y, You Z M, Yan T, Zhang J, Wang S, Xu Z L 2019 Atom. Energ. Sci. Technol. 53 1670

    [17]

    Sgobba S 2006 CAS-CERN Accelerator School and ALBA Synchrotron Light Facility: Course on Vacuum in Accelerators Platja d'Aro, Spain, May 16 − 24, 2006 p117

    [18]

    Couturier K, Sgobba S 2000 Materials Week Munich, Germany, Sep 25−28, 2000 p006

    [19]

    Sgobba S, Kumpula M, Liimatainen J, Savary F 2000 2000 Powder Metallurgy World Congress Kyoto, Japan, Nov 12−16, 2000 p008

    [20]

    刘沛航 2017 硕士学位论文 (合肥: 中国科学技术大学)

    Liu P H 2017 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [21]

    王坤, 嵇辉, 刘沛航, 金环, 秦经刚, 武玉 2016 低温与超导 44 24

    Wang K, Ji H, Liu P H, Jin H, Qin J G, Wu Y 2016 Cryogenics Supercond. 44 24

    [22]

    陈光 2018 硕士学位论文 (合肥: 合肥工业大学)

    Chen G 2018 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese)

    [23]

    张华辉 2017 硕士学位论文 (合肥: 中国科学技术大学)

    Zhang H H 2017 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    Thompson C A, Manganaro W M, Fickett F R https://www.copper.org/resources/properties/cryogenic/ [2020−3.15]

    [25]

    赵维娟, 张春堂, 于利军 1986 低温与特气 02 81

    Zhao W J, Zhang C T, Yu L J 1986 Low Temp. Specialty Gases 02 81

    [26]

    丁坤和, 赵素馨, 葛翠英 1981 宇航材料工艺 01 31

    Ding K H, Zhao S X, Ge C Y 1981 Aerosp. Mater. Technol. 01 31

    [27]

    Iadarola G, Rumolo G, Arduini G, Bartosik H, Shaposhnikova E, Maury Cuna G, Esteban Muller J, Tavian L, Baglin V, Zimmermann F 2013 4th International Particle Accelerator Conference Shanghai, China, May 12−17, 2013 p1331

    [28]

    Berg S 1997 Energy Gain in an Electron Cloud During the Passage of a Bunch (Geneva, Cern, LHC Project Note 97[R])

  • 图 1  束流热屏模型的结构和尺寸

    Figure 1.  Structure and size of beam screen model.

    图 2  五种网格数目的束流热屏最高温度计算结果

    Figure 2.  The calculation result of the maximum temperature of beam screen with five kinds of the grids.

    图 3  不同路径和束流热屏形变随不同路径的变化 (a) 路径1、路径2、路径3和路径4的示意图; (b) 束流热屏内屏形变量沿着路径1的变化; (c) 束流热屏外屏形变量沿着路径3的变化.

    Figure 3.  Different paths and variations with distance along paths in beam screen. (a) Schematic of paths 1, 2, 3 and 4; (b) variations of the inner screen with distance along path 1 in beam screen; (c) variations of the outer screen with distance along path 3 in beam screen.

    图 4  有洛伦兹力情况下的热-结构耦合模拟结果 (a) 总体形变分布; (b) X方向上的形变分布云图; (c) Y方向上的形变分布云图; (d) Z方向上的形变分布云图

    Figure 4.  Simulation results of thermal-structure coupling with Lorentz force: (a) Overall deformation distribution; (b) cloud map of deformation distributions in X direction; (c) cloud map of deformation distributions in Y direction; (d) cloud map of deformation distributions in Z direction.

    图 5  束流热屏形变随不同路径的变化 (a) 束流热屏内屏处形变量沿着路径1的变化; (b) 束流热屏外屏边缘处沿着路径2的形变量; (c) 束流热屏外屏形变量沿着路径3的变化

    Figure 5.  Variations with distance along paths in beam screen: (a) Variations of the inner screen along path 1 in beam screen; (b) variations of the edge of outer screen along path 2 in beam screen; (c) variations of the outer screen along path 3 in beam screen.

    图 6  不同铜涂层厚度下的束流热屏模型最高温度

    Figure 6.  Maximum temperature of beam screen model under different copper plating thickness.

    图 7  不同铜涂层厚度下的束流热屏外屏最大形变量

    Figure 7.  Maximum deformation of beam screen outside screen under different copper coating thickness.

    图 8  (a)增加支撑肋片的束流热屏模型; (b)相邻支撑肋片间隔排气孔数量为1个时的支撑肋片分布; (c)相邻支撑肋片间隔排气孔数量为1个时束流热屏模型的温度分布图

    Figure 8.  (a) Beam screen model with added support ribs; (b) distributions of support fins when the number of exhaust holes between adjacent support fins is one; (c) temperature distribution diagram of the beam screen model when the number of exhaust holes between adjacent support fins is one.

    图 9  不同支撑肋片分布下的束流热屏最高温度

    Figure 9.  Maximum temperature of beam screen under different supporting ribs distribution.

    图 10  6种不同支撑肋片束流热屏内屏边缘处沿着路径4的形变分布

    Figure 10.  Deformation distributions along path 4 at the edge of inner screen of six beam screens with different number of support ribs.

    图 11  六种束流热屏的内屏边缘处最大形变量

    Figure 11.  Maximum deformation at the edge of the inner screen of six beam screens.

    表 1  温度为80 K时, 无氧铜和316LN不锈钢的材料属性

    Table 1.  Material properties of oxygen-free copper and 316LN stainless steel at 80 K.

    材料性能
    材料
    密度/kg·m–3杨氏模量/GPa泊松比导热系数/W·m–1·K–1热膨胀系数/10–6 K–1
    316LN不锈钢79002090.38.1210.4
    无氧铜89331370.3385408
    DownLoad: CSV
  • [1]

    Aad G, Abajyan T, Abbott B, Abdallah J, Khalek S A, Abdelalim A A, Abdinov O, Aben R, Abi B, Abolins M 2012 Phys. Lett. B. 716 1Google Scholar

    [2]

    Vien V V 2020 J. Phys. G: Nucl. Part. Phys. 47 055007Google Scholar

    [3]

    Alexander S, McDonough E, Pullen A, Shapiro B 2020 J. Cosmol. Astropart. Phys. 1 032

    [4]

    Sirunyan A, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, Dragicevic M, Ero J, Del Valle A, Flechl M 2020 Eur. Phys. J. C 80 1Google Scholar

    [5]

    Group CEPC Study 2018 arXiv: 1809.00285 [ap−ph]

    [6]

    Gröbner O 2001 Vacuum 60 25Google Scholar

    [7]

    Cern 2004 LHC Design Report (Geneva, Cern, CM-B00029745[R])

    [8]

    Cruikshank P, Artoos K, Bertinelli F, Brunet J C, Calder R, Campedel C, Collins I, Dalin J M, Feral B, Grobner O 1997 Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97 CH36167) Vancouver, BC, Canada May 16, 1997 p3586

    [9]

    Zimmermann F, Guillermo Cantón G, Osborne J, Todesco E, Oide K, Bruce R, Giovannozzi M, Martinez Mirave P, Cai Y, Fartoukh S 2018 J. Phys. Conf. Ser. 1067 022009Google Scholar

    [10]

    Calder R, Gröbner O, Mathewson A, Anashin V, Dranichnikov A, Malyshev O 1996 J. Vac. Sci. Technol. A. 14 2618Google Scholar

    [11]

    Baglin V, Bregliozzi G, Lanza G, Jimenez J 2011 2nd International Particle Accelerator Conference San Sebastian, Spain, Sep 4−9, 2011 pTUPS019

    [12]

    Baglin V, Lebrun P, Tavian L, van Weelderen R 2012 24th International Cryogenic Engineering Conference and International Cryogenic Materials Conference 2012 Fukuoka, Japan, May 14−18, 2012 p006

    [13]

    Ruggiero F, Berg J, Bruning O, Caspers F, Morvillo M, D'Yachkov M 1997 Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97 CH36167) Vancouver, BC, Canada May 16, 1997 p107

    [14]

    周洪吉 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhou H J 2013 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [15]

    吴锡, 袁平, 马力祯, 张小奇, 何源, 吴巍, 姚庆高, 郭蓓蕾 2010 強激光与粒子束 22 1335Google Scholar

    Wu X, Yuan P, Ma L Z, Zhang X Q, He Y, Wu W, Yao Q G, Guo B L 2010 High Pow. Las.Part. Beam 22 1335Google Scholar

    [16]

    范佳锟, 王洁, 高勇, 游志明, 严涛, 张静, 王盛, 许章炼 2019 原子能科学技术 53 1670

    Fan J K, Wang J, Gao Y, You Z M, Yan T, Zhang J, Wang S, Xu Z L 2019 Atom. Energ. Sci. Technol. 53 1670

    [17]

    Sgobba S 2006 CAS-CERN Accelerator School and ALBA Synchrotron Light Facility: Course on Vacuum in Accelerators Platja d'Aro, Spain, May 16 − 24, 2006 p117

    [18]

    Couturier K, Sgobba S 2000 Materials Week Munich, Germany, Sep 25−28, 2000 p006

    [19]

    Sgobba S, Kumpula M, Liimatainen J, Savary F 2000 2000 Powder Metallurgy World Congress Kyoto, Japan, Nov 12−16, 2000 p008

    [20]

    刘沛航 2017 硕士学位论文 (合肥: 中国科学技术大学)

    Liu P H 2017 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [21]

    王坤, 嵇辉, 刘沛航, 金环, 秦经刚, 武玉 2016 低温与超导 44 24

    Wang K, Ji H, Liu P H, Jin H, Qin J G, Wu Y 2016 Cryogenics Supercond. 44 24

    [22]

    陈光 2018 硕士学位论文 (合肥: 合肥工业大学)

    Chen G 2018 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese)

    [23]

    张华辉 2017 硕士学位论文 (合肥: 中国科学技术大学)

    Zhang H H 2017 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    Thompson C A, Manganaro W M, Fickett F R https://www.copper.org/resources/properties/cryogenic/ [2020−3.15]

    [25]

    赵维娟, 张春堂, 于利军 1986 低温与特气 02 81

    Zhao W J, Zhang C T, Yu L J 1986 Low Temp. Specialty Gases 02 81

    [26]

    丁坤和, 赵素馨, 葛翠英 1981 宇航材料工艺 01 31

    Ding K H, Zhao S X, Ge C Y 1981 Aerosp. Mater. Technol. 01 31

    [27]

    Iadarola G, Rumolo G, Arduini G, Bartosik H, Shaposhnikova E, Maury Cuna G, Esteban Muller J, Tavian L, Baglin V, Zimmermann F 2013 4th International Particle Accelerator Conference Shanghai, China, May 12−17, 2013 p1331

    [28]

    Berg S 1997 Energy Gain in an Electron Cloud During the Passage of a Bunch (Geneva, Cern, LHC Project Note 97[R])

  • [1] Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng. Time of flight detector for charged particle identification based on circular electron-positron collider. Acta Physica Sinica, 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [2] Tang Chuan-Xiang, Deng Xiu-Jie. Steady-state micro-bunching accelerator light source. Acta Physica Sinica, 2022, 71(15): 152901. doi: 10.7498/aps.71.20220486
    [3] Dong Xu, Huang Yong-Sheng, Tang Guang-Yi, Chen Shan-Hong, Si Mei-Yu, Zhang Jian-Yong. Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering. Acta Physica Sinica, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [4] You Zhi-Ming, Wang Jie, Gao Yong, Fan Jia-Kun, Zhang Jing, Hu Yao-Cheng, Wang Sheng, Xu Zhang-Lian, Zhang Qi. Gas density evolution in beam screen of super proton-proton collider. Acta Physica Sinica, 2021, 70(16): 166802. doi: 10.7498/aps.70.20201594
    [5] Li Ang, Yu Jin-Qing, Chen Yu-Qing, Yan Xue-Qing. Numerical method of electron-positron pairs generation in photon-photon collider. Acta Physica Sinica, 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [6] Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy. Acta Physica Sinica, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [7] Huang Jin-Shu, Luo Peng-Hui, Lu Gong-Ru. Bottom quark pair production in γγ collision. Acta Physica Sinica, 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [8] Yang Hai-Liang, Qiu Ai-Ci, Li Jing-Ya, Sun Jian-Feng, He Xiao-Ping, Tang Jun-Ping, Wang Hai-Yang, Huang Jian-Jun, Ren Shu-Qing, Zou Li-Li, Yang Li. Energy spectra of high-power ion beams measured with a pile of thin films on FLASH Ⅱ. Acta Physica Sinica, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [9] Zhu Lun-Wu, Weng Jia-Qiang, Gao Yuan, Fang Jin-Qing. . Acta Physica Sinica, 2002, 51(7): 1483-1488. doi: 10.7498/aps.51.1483
    [10] GAO YUAN, WENG JIA-QIANG, FANG JIN-QING, LUO XIAO-SHU. A METHOD OF MULTI PERIODICAL INTERVAL CONTROL BEAM HALO-CHAOS BY WAVELET FEEDBACK CONTROL FUNCTION. Acta Physica Sinica, 2001, 50(8): 1440-1446. doi: 10.7498/aps.50.1440
    [11] ZENG GUI-HUA, XU ZHI-ZHAN. A NEW TYPE ACCELERATOR. Acta Physica Sinica, 1997, 46(12): 2384-2388. doi: 10.7498/aps.46.2384
    [12] ZHU SHI-TONG. FREQUENCY MATCHING IN BEAT WAVE LASER ACCELERATOR. Acta Physica Sinica, 1989, 38(7): 1167-1171. doi: 10.7498/aps.38.1167
    [13] Yu Wei; Xu Zhi-zhan. PARAMETER CHOICE FOR A LASER BEAT-WAVE ACCELERATOR. Acta Physica Sinica, 1987, 36(8): 992-997. doi: 10.7498/aps.36.992
    [14] XIE XI. A SHORT-CUT METHOD FOR THE SOLUTION OF THE BETATRON OSCILLATION IN PARTICLE ACCELERATORS. Acta Physica Sinica, 1976, 25(5): 383-398. doi: 10.7498/aps.25.383
    [15] GIH KWANG-TA, CHOU HSI-TING, CHANG YUAN-CHENG, HO KUO-CHU. PERIODIC FOCUSING EFFECT IN DC ACCERLERATORS. Acta Physica Sinica, 1965, 21(4): 736-747. doi: 10.7498/aps.21.736
    [16] иCCлEдOBAHиE лPOЦECCA лPOXOЖдEHиЯ ЧACTиЦ ЧEP3 HEлиHEйHYЮ PE3OHAHCHYЮ лиHЮ лиHиЮ (Qρ=6/5) B ЦиКлOTPOHE C лPOCTPAHCTBEHHOй BAPиAЦиEй. Acta Physica Sinica, 1964, 20(7): 636-642. doi: 10.7498/aps.20.636
    [17] АНАЛИЗ РАДИАЛЬНОГО БЕТАТРОННОГО КОЛЕБАНИЯ ЧАСТИЦ БЕЗ УЧЁТА УСКОРЕНИЯ В ЦИКЛОТРОНЕ С ПРОСТРАНСТВЕННОЙ ВАРИАЦИЕЙ. Acta Physica Sinica, 1964, 20(4): 305-310. doi: 10.7498/aps.20.305
    [18] YEH MING-HAN, SUN LIANG-FANG, SHYU CHIEN-MING, CHIN CHIEN-CHUNG, YEH LONG-FEI, CHEN JYH-CHEN, CHEN CHIEN-POU, SHAH GUANG-CHANG, YU CHUEH-HSIEN, LI ZHENG-WU, CHAO CHUNG-YAO. A PROTON ELECTROSTATIC ACCELERATOR. Acta Physica Sinica, 1963, 19(1): 60-69. doi: 10.7498/aps.19.60
    [19] SEN QING-HE, JIANG SONG-SHENG, GU YI-PAN. PULSED MODULATION OF CYCLOTRON ION BEAM. Acta Physica Sinica, 1960, 16(2): 94-97. doi: 10.7498/aps.16.94
    [20] О ВЛИЯНИИ ИЗЛУЧЕНИЯ НА БЕТАТРОННЫЕ КОЛЕБАНИЯ В УСКОРИТЕЛЯХ. Acta Physica Sinica, 1957, 13(2): 115-129. doi: 10.7498/aps.13.115
Metrics
  • Abstract views:  4121
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2020
  • Accepted Date:  31 August 2020
  • Available Online:  14 December 2020
  • Published Online:  05 January 2021

/

返回文章
返回