Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced dye lasing emission by guided-mode resonance grating with mesoporous silica as spacing layer

Cui Tao Wang Kang-Ni Gao Kai-Ge Qian Lin-Yong

Citation:

Enhanced dye lasing emission by guided-mode resonance grating with mesoporous silica as spacing layer

Cui Tao, Wang Kang-Ni, Gao Kai-Ge, Qian Lin-Yong
PDF
HTML
Get Citation
  • The enhancement of lasing emission intensity of dye laser is particularly important and urgently required due to a broad range of optical and electrical applications. The guided-mode resonance (GMR) effect occurs in a periodic waveguide structure where an incident wave is coupled to a leaky waveguide mode, and yields a resonance peak. The resonance wavelength can be easily controlled by adjusting the period of the grating, thickness of the waveguide layer, and refractive index of the covering materials. By using band edge states, one may be able to excite optical resonances extended over the entire structure surface, thereby achieving field enhancement over a large area. In this study, mesoporous silica with low refractive index is introduced between the grating layer and the substrate layer of the GMR structure to significantly enhance the contact between local electric field and gain medium. For comparison, another structure using SU-8 with high refractive index as the spacing layer is also proposed. It is clearly observed that the maximum of the electric field intensity is highly localized inside the SU-8 waveguide grating layer. However, it is shifted upward to the gain medium layer in the mesoporous silica structure due to the reverse symmetry waveguide structure design. Therefore, the interaction between laser dye and electric field is increased to further enhance the lasing emission.Besides the refractive index, the waveguide layer, other structural parameters such as thickness of each layer and grating period also affect the electric field distribution in the GMR structure. Based on the finite-difference time-domain method, the structural parameters are analyzed and optimized. According to the simulation results, the structure parameters TWG = 3.5 μm, Λ = 700 nm, and $ T_{\rm TiO_2} = 20 $ nm are chosen as the guideline for designing the dye laser, which generates the resonance wavelength of 820 nm the same as the absorption wavelength of dye molecules. Additionally, the laser characteristics excited by pump light with the wavelength of 820 nm are studied. The continuous laser output is obtained. The energy threshold is about 2.5 mJ/cm2, and the linewidth is about 0.3 nm. The proposed structure can effectively regulate the surface local electric field and enhance the interaction between pump light and gain medium. It can not only be used in lasers, but also provide reference for designing other light-emitting devices.
      Corresponding author: Wang Kang-Ni, yishuihetian@126.com ; Qian Lin-Yong, leonqly@126.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61805210, 11704162), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB510048), and the Natural Science Foundation of Jiangsu, China (Grant No. BK20170482)
    [1]

    Sorokin P P, Lankard J R 1966 Ibn. J. Res. Dev. 10 162Google Scholar

    [2]

    Wang G M, Zhang Z H 2011 Laser Phys. 21 981Google Scholar

    [3]

    刘秋武, 王晓宾, 陈亚峰, 曹开法, 胡顺星, 黄见 2017 光学学报 37 338

    Liu Q W, Wang X B, Chen Y F, Cao K F, Hu S X, Huang J 2017 Acta Opt. Sin. 37 338

    [4]

    蔡慧敏, 张少渊, 翁达玲, 王培晶 2004 应用激光 24 418Google Scholar

    Cai H M, Zhang S Y, Weng D L, Wang P J 2004 Applied Laser 24 418Google Scholar

    [5]

    黄峰, 汪岳峰, 牛燕雄, 王金玉 2005 激光与红外 35 137Google Scholar

    Huang F, Wang Y F, Niu Y X, Wang J Y 2005 Lasers & Infrared 35 137Google Scholar

    [6]

    Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022Google Scholar

    [7]

    杨赛, 盛斌, 张大伟, 钱林勇, 陈鹏, 黄元申 2015 中国激光 42 323

    Yang S, Sheng B, Zhang D W, Qian L Y, Chen P, Huang Y S 2015 Chin. J. Las. 42 323

    [8]

    桑田, 蔡托, 刘芳, 蔡绍洪, 张大伟 2013 物理学报 62 326

    Sang T, Cai T, Liu F, Cai S H, Zhang D W 2013 Acta Phys. Sin. 62 326

    [9]

    Wawro D D, Tibuleac S, Magnusson R, Liu H 2000 Proc. SPIE 3911, Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II San Jose, CA, United States, May 3 2000 86

    [10]

    Mizutani A, Kikuta H, Iwata K 2005 J. Opt. Soc. Am. A 22 355Google Scholar

    [11]

    李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超 2016 物理学报 65 105201Google Scholar

    Li Z Q, Zhang M, Peng T, Yue Z, Gu E D, Li W C 2016 Acta Phys. Sin. 65 105201Google Scholar

    [12]

    Soria S, Thayil K N A, Badenes G, Bader M A, Selle A, Marowsky G 2005 Appl. Phys. Lett. 87 081109Google Scholar

    [13]

    Pokhriyal A, Lu M, Chaudhery V, Huang C S, Schulz S, Cunningham B T 2010 Opt. Express 18 24793Google Scholar

    [14]

    Takashi K, Yoshiaki K, Kazuhiro H 2005 Appl. Phys. Lett. 87 151106Google Scholar

    [15]

    Magnusson R, Ding Y, Lee K J, Shin D, Priambodo P S, Young P P, Maldonado T A 2003 Optical Science and Technology, SPIE's 48 th Annual Meeting San Diego, California, United States 2003 p20

    [16]

    江孝伟, 关宝璐 2019 光子学报 48 0114005Google Scholar

    Jiang X W, Guan B L 2019 Acta. Photon. Sin. 48 0114005Google Scholar

    [17]

    贾艳萍, 马姣, 张兰河, 董长青, 王孝强 2014 硅酸盐通报 33 3206

    Jia Y P, Ma J, Zhang L H, Dong C Q, Wang X Q 2014 B. Chin. Ceram. Soc. 33 3206

    [18]

    熊怀, 唐永兴, 胡丽丽, 沈斌, 李海元 2019 光学学报 39 0831001Google Scholar

    Xiong H, Tang Y X, Hu L L, Shen B, Li H Y 2019 Acta Optica Sin. 39 0831001Google Scholar

    [19]

    Vu D T, Chiu H W, Nababan R, Le Q M, Kuo S W, Chau L K, Ting C C, Kan H C, Hsu C C 2018 ACS Photonics 5 3263Google Scholar

    [20]

    Wang S S, Magnusson R, Bagby J S, Moharam M G 1990 J. Opt. Soc. Am. A 7 1470Google Scholar

    [21]

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotechnol. 8 506Google Scholar

  • 图 1  激光器结构示意图

    Figure 1.  Schematic of laser structure.

    图 2  (a) TE偏振下多孔二氧化硅结构的反射谱随入射角和波长的变化曲线; (b) 3.7°入射角下多孔二氧化硅结构的反射谱; (c) 3.7°入射角下多孔二氧化硅结构的820 nm共振峰; (d) 21.3°入射角下SU-8结构的820 nm共振峰

    Figure 2.  Calculated reflection in TE mode as a function of incident angle and wavelength for mesoporous silica structure; (b) calculated reflection spectrum of mesoporous silica structure at the incident angle of 3.7°; (c) resonance wavelength of 820 nm at the incident angle of 3.7° for mesoporous silica structure; (d) resonance wavelength of 820 nm at the incident angle of 21.3° for SU-8 structure.

    图 3  TE偏振入射下共振波长处的电场强度|E|2分布图: (a)多孔二氧化硅结构和(b)局部放大图; (c) SU-8结构和(d)局部放大图

    Figure 3.  Electric field intensities |E|2 for the TE-polarized light incidence at resonance wavelength: (a) mesoporous silica structure and (b) partially enlarged view; (c) SU-8 structure and (d) partially enlarged view.

    图 4  增益介质区域的局域电场均方值$ \left\langle {|E|^2} \right\rangle $)和共振角度随 (a)多孔二氧化硅层厚度, (b)光栅周期与(c)TiO2厚度的变化曲线

    Figure 4.  Calculated $ \left\langle {|E|^2} \right\rangle $ value and resonance angle versus (a) the thickness of the mesoporous silica, (b) the grating period and (c) the thickness of TiO2.

    图 5  两种结构的激光出射归一化强度谱线

    Figure 5.  Normalized emission spectra of the laser with SU-8 and mesoporous silica.

    图 6  (a) 不同入射角下的激光出射谱线; (b) 3.7°共振条件时多孔二氧化硅层厚度与激光出射谱线的关系

    Figure 6.  (a) Normalized emission spectra of the laser at different incident angles; (b) normalized emission spectra of the laser at the incident angle of 3.7° vs. thickness of the mesoporous silica.

    图 7  (a) 非共振激发(θ = 3.4°)条件下的局域电场强度|E|2和(b)局部放大图; (c) 非共振激发(θ = 4.0°)条件下的局域电场强度|E|2和(d) 局部放大图

    Figure 7.  (a) Calculated TE mode |E|2 obtained with θ = 3.4° (off-resonance) and (b) partially enlarged view; (c) calculated TE mode |E|2 obtained with θ = 4.0° (off-resonance) and (d) partially enlarged view.

    图 8  (a) 激光出射谱随抽运能量的变化曲线; (b) 出射线宽和强度随抽运能量的变化曲线

    Figure 8.  (a) Laser emission spectra as a function of input pump energy; (b) linewidth and maximum emission intensity as a function of input pump intensity.

    图 9  (a) 不同入射角下多孔二氧化硅结构激光器的出射强度随抽运能量的变化曲线; (b) 出射阈值和共振角度随多孔二氧化硅折射率的变化曲线

    Figure 9.  (a) Emission intensity as a function of input pump energy for different resonance angles; (b) calculated lasing threshold and resonance angle versus the refractive index of the mesoporous silica.

  • [1]

    Sorokin P P, Lankard J R 1966 Ibn. J. Res. Dev. 10 162Google Scholar

    [2]

    Wang G M, Zhang Z H 2011 Laser Phys. 21 981Google Scholar

    [3]

    刘秋武, 王晓宾, 陈亚峰, 曹开法, 胡顺星, 黄见 2017 光学学报 37 338

    Liu Q W, Wang X B, Chen Y F, Cao K F, Hu S X, Huang J 2017 Acta Opt. Sin. 37 338

    [4]

    蔡慧敏, 张少渊, 翁达玲, 王培晶 2004 应用激光 24 418Google Scholar

    Cai H M, Zhang S Y, Weng D L, Wang P J 2004 Applied Laser 24 418Google Scholar

    [5]

    黄峰, 汪岳峰, 牛燕雄, 王金玉 2005 激光与红外 35 137Google Scholar

    Huang F, Wang Y F, Niu Y X, Wang J Y 2005 Lasers & Infrared 35 137Google Scholar

    [6]

    Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022Google Scholar

    [7]

    杨赛, 盛斌, 张大伟, 钱林勇, 陈鹏, 黄元申 2015 中国激光 42 323

    Yang S, Sheng B, Zhang D W, Qian L Y, Chen P, Huang Y S 2015 Chin. J. Las. 42 323

    [8]

    桑田, 蔡托, 刘芳, 蔡绍洪, 张大伟 2013 物理学报 62 326

    Sang T, Cai T, Liu F, Cai S H, Zhang D W 2013 Acta Phys. Sin. 62 326

    [9]

    Wawro D D, Tibuleac S, Magnusson R, Liu H 2000 Proc. SPIE 3911, Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II San Jose, CA, United States, May 3 2000 86

    [10]

    Mizutani A, Kikuta H, Iwata K 2005 J. Opt. Soc. Am. A 22 355Google Scholar

    [11]

    李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超 2016 物理学报 65 105201Google Scholar

    Li Z Q, Zhang M, Peng T, Yue Z, Gu E D, Li W C 2016 Acta Phys. Sin. 65 105201Google Scholar

    [12]

    Soria S, Thayil K N A, Badenes G, Bader M A, Selle A, Marowsky G 2005 Appl. Phys. Lett. 87 081109Google Scholar

    [13]

    Pokhriyal A, Lu M, Chaudhery V, Huang C S, Schulz S, Cunningham B T 2010 Opt. Express 18 24793Google Scholar

    [14]

    Takashi K, Yoshiaki K, Kazuhiro H 2005 Appl. Phys. Lett. 87 151106Google Scholar

    [15]

    Magnusson R, Ding Y, Lee K J, Shin D, Priambodo P S, Young P P, Maldonado T A 2003 Optical Science and Technology, SPIE's 48 th Annual Meeting San Diego, California, United States 2003 p20

    [16]

    江孝伟, 关宝璐 2019 光子学报 48 0114005Google Scholar

    Jiang X W, Guan B L 2019 Acta. Photon. Sin. 48 0114005Google Scholar

    [17]

    贾艳萍, 马姣, 张兰河, 董长青, 王孝强 2014 硅酸盐通报 33 3206

    Jia Y P, Ma J, Zhang L H, Dong C Q, Wang X Q 2014 B. Chin. Ceram. Soc. 33 3206

    [18]

    熊怀, 唐永兴, 胡丽丽, 沈斌, 李海元 2019 光学学报 39 0831001Google Scholar

    Xiong H, Tang Y X, Hu L L, Shen B, Li H Y 2019 Acta Optica Sin. 39 0831001Google Scholar

    [19]

    Vu D T, Chiu H W, Nababan R, Le Q M, Kuo S W, Chau L K, Ting C C, Kan H C, Hsu C C 2018 ACS Photonics 5 3263Google Scholar

    [20]

    Wang S S, Magnusson R, Bagby J S, Moharam M G 1990 J. Opt. Soc. Am. A 7 1470Google Scholar

    [21]

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W 2013 Nat. Nanotechnol. 8 506Google Scholar

Metrics
  • Abstract views:  4328
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2020
  • Accepted Date:  23 August 2020
  • Available Online:  14 December 2020
  • Published Online:  05 January 2021

/

返回文章
返回